МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Белгородский государственный технологический университет им. В. Г. Шухова

Методические указания к выполнению контрольной работы «Элементы статистики» для студентов II курса экономических направлений бакалавриата

Белгород 2020

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Белгородский государственный технологический университет им. В.Г. Шухова Кафедра высшей математики

> Утверждено научно-методическим советом университета

Методические указания к выполнению контрольной работы «Элементы статистики» для студентов II курса экономических направлений бакалавриата

УДК 51 ББК 22.1 M52

Составители: канд. техн. наук, доц. Г. Л. Окунева ст. преп. Л. Б. Польшина ст. преп. Е. В. Селиванова

Рецензент: канд. физ.-мат. наук, доц. Ю. Ю. Некрасов

Методические указания к выполнению контрольной работы м52 «Элементы статистики» для студентов ІІ курса экономических направлений бакалавриата / Г. Л. Окунева, Л. Б. Польшина, Е. В. Селиванова – Белгород: Изд-во БГТУ, 2020. – 50 с.

Методические указания подготовлены в соответствии с требованиями Федерального государственного стандарта высшего профессионального образования и рабочей программы дисциплины «Теория вероятностей и математическая статистика», содержат основные теоретические положения, примеры решения типовых задач по теме «Элементы статистики», а также варианты контрольных работ.

Методические указания предназначены для студентов II курса экономических направлений бакалавриата.

Публикуется в авторской редакции.

УДК 51 ББК 22.1

© Белгородский государственный технологический университет (БГТУ) им. В. Г. Шухова, 2020

Введение

В контрольную работу входят задания по второй теме дисциплины «Теория вероятностей и элементы математической статистики» — «Элементы математической статистики». В раздел входят следующие вопросы: основные понятия раздела, вариационный ряд и его характеристики, оценки и их свойства, гипотезы и способы их доказательства, эмпирические законы распределения случайных величин, определение неизвестных параметров распределения, элементы теории корреляции.

Основные теоретические положения

Генеральной совокупностью называется совокупность всех однородных объектов, подлежащих изучению. Объем генеральной совокупности N.

Выборочной совокупностью, или **выборкой** называется совокупность объектов случайно отобранных из генеральной совокупности.

Объемом выборки n называется число ее объектов.

Выборка бывает **повторной** (с возвращением исследуемого объекта в генеральную совокупность) и **бесповторной**, при которой отобранный объект в генеральную совокупность не возвращается.

Выборка должна быть **репрезентативной** (представительной), т. е. она должна правильно отображать все свойства и характеристики объектов генеральной совокупности.

Пусть в результате независимых испытаний, проведенных в одинаковых условиях, из генеральной совокупности данных, выбраны числовые значения $x_1, x_2, \ldots x_n$, характеризующие некоторый признак (здесь n – объем выборки). Последовательность наблюдаемых значений x_i (i = 1, 2, ..., n), записанных в возрастающем порядке, называется дискретным вариационным рядом, а элементы этой последовательности x_i называют вариантами. Если среди вариант есть равные значения, тогда дискретный вариационный ряд записывают в виде табл. 1,

Таблица 1

3начения X	x_1	x_2	•••	x_k
Частоты	n_1	n_2	•••	n_k

где $n_1, n_2, ..., n_k$ — частоты (количества повторений) значений $x_1, x_2, ..., x_k$; при этом должно выполняться условие

$$n_1 + n_2 + \ldots + n_k = n$$
.

Статистическим распределением частот (распределением частот) называется перечень вариант и соответствующих им частот, записанных в виде таблицы.

Относительной частотой W_i варианты x_i называется отношение

ее частоты к объему выборки: $w_i = \frac{n_i}{n}$.

Сумма относительных частот всех вариант равна единице:

$$\sum_{i=1}^k w_i = 1.$$

Распределением относительных частот называется перечень вариант и соответствующих им относительных частот.

Полигоном частот называют ломаную (рис. 1), составленную из отрезков прямых, которые соединяют точки $(x_1, n_1), (x_2, n_2), \ldots, (x_k, n_k)$; здесь x_i – варианты, n_i – частоты.

Полигоном относительных частот называют ломаную, составленную из отрезков, которые соединяют точки с координатами (x_i, w_i).

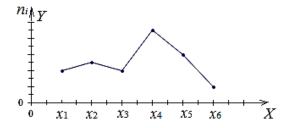


Рис. 1. Полигон частот

Интервальный вариационный ряд — это ряд, в котором значения признака могут меняться непрерывно или число значений признака велико. Для построения такого ряда промежуток изменения признака разбивается на ряд отдельных интервалов и подсчитывается количество значений величины в каждом из них. Если все интервалы имеют одинаковую длину, то число интервалов в случае нормально

распределенной совокупности рекомендуется находить по формуле Стерджесса

$$k = 1 + 3{,}322 \lg(n);$$

обычно, $6 \le k \le 12$.

Длина частичного интервала определяется по формуле

$$h = (x_{max} - x_{min})/k;$$

величина ($x_{max} - x_{min}$), называется **размахом вариации**. Это разность между наибольшим и наименьшим значениями признака.

Гистограммой частот называется ступенчатая фигура (рис. 2), состоящая из прямоугольников с основаниями $h_i = (x_{i-1}; x_i)$ и высотами n_i / h_i . Если интервалы имеют одинаковую длину, то прямоугольники имеют одно и тоже основание h; их высоты равны n_i / h .

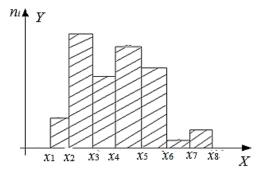


Рис. 2. Гистограмма частот

Эмпирической функцией распределения, или функцией распределения выборки, называется функция, определяющая для каждого значения X относительную частоту события X < x. Обозначим функцию распределения через $F^*(x)$; если n_x — число вариант, меньших x, n — объем выборки, то по определению

$$F^*(x) = n_x / n.$$

Свойства функции $F^*(x)$:

- 1) значения функции $F^*(x)$ принадлежат отрезку [0; 1];
- 2) $F^*(x)$ неубывающая функция;
- 3) если x_{min} наименьшая, x_{max} наибольшая варианта, то

$$F^*(x) = 0$$
, при $x < x_{min}$; $F^*(x) = 1$, при $x \ge x_{max}$.

Выборочную функцию распределения можно задать аналитически, таблично (табл. 2) или графически (рис. 3, 4).

$$F^*(x) = \begin{cases} 0, \text{ если } x \leq x_1, \\ \frac{n_1}{n}, \text{ если } x_1 < x \leq x_2, \\ \frac{n_1 + n_2}{n}, \text{ если } x_2 < x \leq x_3, \\ \dots \\ \frac{n_1 + n_2 + \dots + n_{n-1}}{n}, \text{ если } x_{n-2} < x \leq x_{n-1}, \\ 1, \text{ если } x_{n-1} > x_n. \end{cases}$$

Таблица 2

Варианты X_i	x_1	x_2	X_{n-1}	\mathcal{X}_n
$F^*(x)$	$\frac{n_1}{n}$	$\frac{n_1+n_2}{n}$	$\frac{n_1 + n_2 + \ldots + n_{n-1}}{n}$	1

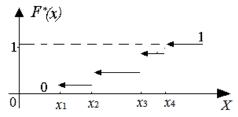


Рис. 3. График функции распределения дискретной функции

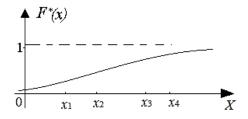


Рис. 4. График функции распределения непрерывной функции

Оценки параметров генеральной совокупности, полученные на основании выборки, называются **статистическими**. Оценку параметра θ обозначим через $\tilde{\theta}$, статистическая оценка является случайной величиной и зависит от x_1, x_2, \dots, x_n , т. е.

$$\tilde{\theta} = \tilde{\theta} (x_1, x_2, \dots, x_n)$$

Числовые характеристики оценок параметров распределения.

Оценка параметра $\widetilde{\theta}$ называется **несмещенной**, если математическое ожидание $\widetilde{\theta}$ равно θ , т.е.

$$M(\tilde{\theta}) = \theta$$

и смещенной, если

$$M(\tilde{\theta}) \neq \theta$$
.

Оценка $\tilde{\theta}$ параметра θ называется состоятельной, если при любом

$$\varepsilon > 0$$
, $\lim_{n \to \infty} P(|\widetilde{\theta} - \theta| < \varepsilon) = 1$.

Оценка $\widetilde{\theta}$ называется эффективной, если при заданном объеме выборки n она имеет наименьшую дисперсию, т.е. $D(\widetilde{\theta}) = D_{min}$.

Оценка $\tilde{\theta}$ имеет практическую ценность, если она является несмещенной, состоятельной и эффективной.

Если статистическая оценка характеризуется одним числом, она называется **точечно**й. К числу таких оценок относятся выборочная средняя и выборочная дисперсия.

Выборочной средней $x_{\rm B}$ называется среднее арифметическое значений признака выборочной совокупности. Если все значения x_1 , x_2 , ..., x_n различны, то

$$x_{\rm B} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$$

Если значения x_1, x_2, \dots, x_k , имеют соответственно частоты $n_1, n_2, \dots, n_k, (n_1 + n_2 + \dots + n_k = n)$, то

$$x_{\mathbf{B}} = \frac{n_{1} \cdot x_{1} + n_{2} \cdot x_{2} + \dots + n_{k} \cdot x_{k}}{n} = \frac{1}{n} \cdot \sum_{i=1}^{k} (n_{i} \cdot x_{i}).$$

Выборочную среднюю иногда обозначают так: $x_{_{\mathrm{B}}} = \overline{X}$.

Величину $x_{_{\mathrm{B}}}=\overline{X}$ принимают в качестве оценки генеральной средней. Можно показать, что эта оценка является несмещенной и состоятельной.

Выборочной дисперсией $D_{\rm B}$ называют среднее арифметическое квадратов отклонения наблюдаемых значений выборки от их среднего значения $x_{\rm B}$.

Если все значения x_1, x_2, \ldots, x_n признака выборки объема n различны, то

$$D_{\rm B} = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(x_i - x_{\rm B} \right)^2.$$

Если среди значений выборки есть равные числа, но сами значения $\{x_1, x_2, \dots, x_k\}$ различные числа, повторяющиеся с частотами $\{n_1, n_2, \dots, n_k\}$, причем $n_1 + n_2 + \dots + n_k = n$, то

$$D_{\mathbf{B}} = \frac{1}{n} \cdot \sum_{i=1}^{k} n_i \left(x_i - x_{\mathbf{B}} \right)^2.$$

Выборочное среднее квадратическое отклонение σ_{B} определяется формулой

$$\sigma_{\rm B} = \sqrt{D_{\rm B}}$$
 .

Для вычисления выборочной дисперсии можно также пользоваться формулой

$$D_{\mathbf{B}} = \left(x^2\right)_{\mathbf{B}} - \left(x_{\mathbf{B}}\right)^2,$$

где

$$x_{\rm B} = \frac{1}{n} \cdot \sum_{i=1}^{k} n_i x_i$$
; $(x^2)_{\rm B} = \frac{1}{n} \cdot \sum_{i=1}^{k} n_i x_i^2$.

Выборочная дисперсия оценивает дисперсию генеральной совокупности и является смещенной оценкой. Чтобы получить несмещенную оценку генеральной дисперсии выборочную дисперсию

умножают на величину $\frac{n}{n-1}$ и получают так называемую эмпирическую (или «исправленную») дисперсию

$$S^2 = \frac{n}{n-1} \cdot D_{\rm B};$$

$$S^{2} = \frac{1}{n-1} \cdot \sum_{i=1}^{k} n_{i} \left(x_{i} - x_{B} \right)^{2}.$$

При $n \ge 50$ практически нет разницы между оценками $D_{\rm B}$ и S^2 . Эти оценки являются состоятельными оценками генеральной дисперсии.

Для оценки среднего квадратического отклонения генеральной совокупности служит «исправленное» среднее квадратическое отклонение

$$S = \sqrt{S^2} = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{k} n_i (x_i - x_B)^2}$$
.

Интервальной оценкой называют числовой интервал (θ_1, θ_2) , определяемый по результатам выборки, в котором с вероятностью γ находится неизвестное значение параметра генеральной совокупности θ , т.е.

$$P(\theta_1 \leq \theta \leq \theta_2) = \gamma$$
.

Вероятность γ называют доверительной вероятностью или надежностью; обычно выбирают значения для вероятности γ близкими к единице (0,95; 0,98; 0,99 и т.д.). Интервал $\left(\theta_1,\theta_2\right)$ называется доверительным интервалом.

Доверительный интервал можно найти из условия

$$P(\mid \theta - \tilde{\theta} \mid < \delta) = \gamma,$$

где $\delta > 0$ – некоторое число. Отсюда следует, что

$$P(\widetilde{\theta} - \delta < \theta < \widetilde{\theta} + \delta) = \gamma.$$

Эта формула означает, что доверительным интервалом является промежуток $\left(\widetilde{\theta}-\delta,\ \widetilde{\theta}+\delta\right)$.

Доверительный интервал оценки математического ожидания a нормального распределения при известном значении среднего квадратического отклонения σ .

$$M(X_{\rm B}) = a$$
; $\sigma(X_{\rm B}) = \frac{\sigma}{\sqrt{n}}$.

При точности оценки $\delta = \frac{t\sigma}{\sqrt{n}}$ и $\gamma = 2\Phi(t)$ получим

$$x_{\rm B} - \frac{t\sigma}{\sqrt{n}} < a < x_{\rm B} + \frac{t\sigma}{\sqrt{n}}$$
.

Число *t* является аргументом функции Лапласа (Приложение 2). Доверительный интервал для **оценки математического ожидания** *a* **нормального распределение при неизвестном значении среднего квадратического отклонения** *S*.

При точности оценки $\delta = \frac{t_\gamma \sigma}{\sqrt{n}}$ и значении t_γ получим

$$x_{\mathbf{B}} - t_{\mathbf{\gamma}} \cdot \frac{S}{\sqrt{n}} < a < x_{\mathbf{B}} + t_{\mathbf{\gamma}} \cdot \frac{S}{\sqrt{n}}.$$

Число t_{γ} является аргументом распределения **Стьюдента** (Приложение 3) с $\nu=n-1$ степенями свободы и уровнем значимости $\alpha=1-\gamma$. Распределение Стьюдента определяется параметром n и не зависит от неизвестных параметров a и σ .

Доверительный интервал для оценки генеральной дисперсии совокупности X, распределенной по нормальному закону, покрывающего среднее квадратическое отклонение σ с надежностью γ .

Введем параметр $q = \frac{\delta}{S}$. Тогда получим условие

$$P(S(1-q) < \sigma < S(1+q)) = \gamma.$$

Рассмотрим случайную величину $\chi = \frac{S\sqrt{n-1}}{\sigma}$, которая имеет

распределение Пирсона, зависит только от n и не зависит от оцениваемого параметра σ . Вероятность для параметра χ равна

$$P\left(\frac{\sqrt{n-1}}{\left(1+q\right)} < \chi < \frac{\sqrt{n-1}}{\left(1-q\right)}\right) = \gamma.$$

Из этого уравнения по табл. Приложения 5 для распределения Пирсона (χ^2- распределения) можно найти параметр q или

используем табл. Приложения 4. Получив значение q, найдем доверительный интервал

$$S(1-q) < \sigma < S(1+q)$$
.

Если q < 1, то доверительный интервал вычисляют так:

$$0 < \sigma < S(1+q).$$

Статистической гипотезой называется всякое высказывание о генеральной совокупности, проверяемое по выборке.

Параметрическая гипотеза — это высказывание относительно параметров известного распределения.

Непараметрическая гипотеза — это высказывание, сформулированное относительно вида распределения.

Нулевой гипотезой называется основная высказанная гипотеза H_0 , конкурирующую гипотезу называют **альтернативной** H_1 . Если за нулевую гипотезу выбрана гипотеза о равенстве параметра определенному значению, например, $H_0: M(x)=1$, то за альтернативную может быть выбрана одна из гипотез:

$$H_1: M(x) > 1, M(x) < 1 M(x) \neq 1.$$

Выбор гипотез сопровождается ошибками двух родов. Ошибка первого рода α означает вероятность принятия гипотезы H_1 , если верна гипотеза H_0 : $\alpha = P(H_1/H_0)$. Ошибка второго рода β означает вероятность принятия гипотезы H_0 , если верна гипотеза H_1 : $\beta = P(H_0/H_1)$.

Правило, по которому принимается решение о том, что верна основная гипотеза или не верна, называется **критерием**, при этом ошибка α называется **уровнем значимости критерия**, а величина $1-\beta=P(H_1/H_1)$ называется **мощностью критерия**.

Статистический критерий K — это случайная величина, по значению которой принимают решение о принятии или отклонении основной гипотезы.

Для проверки параметрических гипотез используют критерии основанные законах распределения значимости, на Лапласа, Пирсона. Непараметрические Фишера, Стъюдента, гипотезы помощью критерия согласия, использующих проверяются c статистики распределений Пирсона, Колмогорова.

Область принятия критерия представлена **критической областью**. Она может быть двусторонней или односторонней. Вид критической области зависит от альтернативной гипотезы.

Пусть высказана основная гипотеза $H_{_0}: M(x) = 1$. Рассмотрим три случая альтернативной гипотезы.

Если $H_{_1}:M(x)\neq 1$, то критическая область является двусторонней (рис. 5), используется функция $f(K/H_{_0})$ для определения квантилей, т. е. границ области принятия решения: левой – $K_{_{1-\alpha/2}}$, правой – $K_{_{\alpha/2}}:P(K_{_{1-\alpha/2}}< K < K_{_{\alpha/2}})=1-\alpha$.

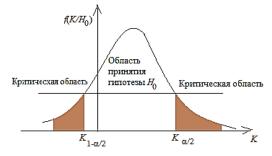


Рис. 5 Двусторонняя критическая область

Если $H_{_1}:M(x)>1$, то критическая область является **правосто- ронней** (рис. 6): $P(K>K_{_{\alpha}})=\alpha$.

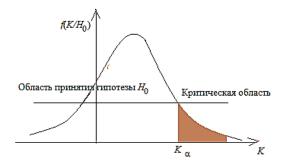


Рис. 6 Правосторонняя критическая область

Если $H_{_1}: M(x) < 1$, то рассматривается левосторонняя критическая область (рис. 7): $P(K < K_{_{1:\alpha}}) = \alpha$.

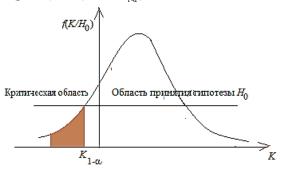


Рис. 7. Левосторонняя критическая область

Алгоритм доказательства параметрической гипотезы.

- 1. Используя данные выборки и принятой основной гипотезы H_0 , найти значение наблюдаемого критерия $K_{\mathrm{набл}}$.
- 2. Исходя из альтернативной гипотезы H_1 , по специальным таблицам (приложения 1, 2, 3) найти значение критического критерия $K_{\rm kp}$ по заданному уровню значимости α и числу степеней свободы k=n-1.
- 3. Сравнить оба эти критерия: если $\left|K_{\text{набл.}}\right| < K_{\text{кр.}}$, то нулевая гипотеза принимается, т. е. нет оснований ее отвергать; в противном случае основная гипотеза отвергается.

Алгоритм доказательства непараметрической гипотезы.

1. По данным выборки найти теоретические частоты по формуле $m_{i}=n_{i}P_{i}$.

Значения теоретических вероятностей P_i вычисляются для разных законов по соответствующим формулам:

- 1) для нормального закона $P_i = \frac{h}{S} f(u_i), u_i = \frac{x_i x_n}{S}, f(u_i)$ функция Лапласа (Приложение 1);
 - 2) для показательного закона $P_i = \frac{h}{S} f(u_i)$,

- 3) Для закона Пуассона $P_i = \frac{h}{S} f(u_i)$,
- 2. Найти значение наблюдаемого критерия

$$\chi^2_{\text{\tiny Halo}\pi} = \sum_i \frac{\left(m_i - n_i\right)^2}{m_i}.$$

- 3. Найти значение критическое критерия $\chi^2_{\mathrm{кр},\alpha,\kappa}$ (Приложение 5), где k число степеней свободы. Число степеней свободы вычисляется с учетом основной гипотезы. Если доказывается гипотеза о нормальном распределении, то k=I-3; если доказываются гипотезы о показательном распределении или распределении Пуассона, то k=I-2, I число интервалов вариационного ряда.
- 4. Сравнить оба эти критерия: если $\left|\chi^2_{\rm набл}\right| < \chi^2_{\rm кp}$, то нулевая H_0 гипотеза принимается, т. е. нет оснований ее отвергать; в противном случае основная гипотеза отвергается.

Задание 1

По данным выборки таблл. 3, необходимо:

- 1) определить объем выборки, размах распределения, составить вариационный ряд дискретной случайной величины;
 - 2) вычислить относительные частоты; определить моду;
 - 3) построить полигон вариационного ряда;
 - 4) составить эмпирическую функцию распределения;
 - 5) построить график эмпирической функции распределения;
 - 6) построить кумуляту, определить медиану распределения;
- 7) вычислить несмещенные оценки параметров генеральной совокупности $\bar{x}_{_{\rm B}}$, S^2 , S;
- 8) найти доверительные интервалы для оценки неизвестного математического ожидания a и неизвестного среднего квадратического отклонения σ с заданной надежностью $\gamma = 0.95$;
- 9) уменьшить значение ошибки в доверительном интервале Δ вдвое и оценить минимальный объем новой выборки;
- 10) доказать параметрическую гипотезу \boldsymbol{H}_0 о равенстве математического ожидания генеральной совокупности значению, выбранному из доверительного интервала для параметра \boldsymbol{a} (задает преподаватель);
- 11) доказать непараметрическую гипотезу о виде закона распределения генеральной совокупности при уровне значимости $\alpha = 0.05$.

Таблица 3

№ вар.	Выборка
1	0, 4, 2, 0, 5, 1, 1, 3, 0, 2, 2, 4, 3, 2, 3, 3, 0, 4, 5, 1, 3, 1, 5, 2, 0, 2, 2, 3, 2, 2, 2, 6, 2, 1, 3, 1, 3, 1, 5, 4, 4, 5, 5, 3, 2, 2, 0, 2, 1, 1, 3, 2, 3, 5, 3, 5, 2, 5, 2, 1, 1, 2, 3, 4, 3, 2
2	3, 7, 6, 4, 1, 4, 2, 4, 6, 5, 3, 2, 9, 0, 5, 6, 7, 7, 3, 1, 5, 5, 4, 2, 6, 2, 1, 5, 3, 3, 1, 5, 6, 4, 4, 3, 4, 1, 5, 5, 3, 4, 3, 7, 4, 5, 6, 7, 5, 2, 4, 6, 6, 7, 7, 3, 5, 4, 4, 3, 5, 5, 7, 6, 6, 1
3	4 0, 2, 0, 1, 3, 0, 1, 0, 2, 1, 3, 6, 6, 2, 1, 3, 2, 2, 1, 3, 3, 2, 6, 2, 4, 3, 2, 2, 5, 5, 2, 3, 3, 4, 1, 4, 2, 2, 1, 3, 0, 1, 2, 1, 4, 4, 2, 3, 5, 5, 2, 1, 2, 3, 2, 3, 1, 5, 0, 5, 0, 4, 1, 5, 1, 0
4	3, 3, 1, 0, 0, 3, 3, 5, 3, 0, 0, 4, 1, 5, 1, 6, 5, 4, 7, 4, 5, 3, 3, 0, 2, 3, 1, 4, 1, 2, 4, 3, 4, 5, 4, 0, 5, 6, 6, 0, 2, 3, 5, 4, 1, 3, 3, 6, 3, 1, 1, 5, 2, 3, 5, 3, 3, 4, 1, 5, 6, 1, 3, 3, 3, 5, 6
5	0, 2, 0, 1, 0, 2, 0, 1, 4, 1, 4, 1, 5, 1, 1, 6, 1, 0, 1, 1, 0, 1, 1, 0, 2, 5, 5, 1, 2, 1, 1, 6, 6, 5, 1, 2, 6, 6, 3, 3, 4, 0, 1, 0, 2, 1, 0, 1, 3, 4, 2, 3, 4, 4, 4, 2, 2, 1, 1, 1, 0, 0, 1, 3, 3, 3, 2
6	4, 10, 7, 6, 3, 7, 8, 7, 4, 7, 10, 7, 3, 9, 3, 1, 5, 8, 11, 10, 6, 5, 7, 6, 3, 8, 4, 3, 8, 4, 10, 6, 8, 7, 8, 5, 5, 7, 7, 7, 4, 6, 7, 10, 4, 4, 0, 5, 4, 4, 8, 5, 5, 10, 7, 3, 8, 5, 6, 6, 6, 3
7	2, 2, 1, 3, 4, 2, 1, 1, 3, 3, 4, 3, 2, 4, 2, 1, 4, 3, 1, 4, 0, 4, 2, 3, 4, 3, 5, 1, 3, 3, 3, 4, 3, 2, 1, 2, 3, 3, 5, 1, 5, 3, 0, 2, 1, 2, 3, 0, 0, 3, 6, 2, 4, 3, 4, 2, 4, 1, 2, 0, 3, 1, 0, 0, 2
8	8, 4, 4, 7, 5, 5, 5, 3, 10, 2, 3, 6, 7, 6, 10, 6, 7, 7, 6, 10, 7, 6, 8, 10, 7, 7, 9, 1, 3, 4, 7, 4, 4, 5, 4, 9, 6, 5, 9, 5, 6, 5, 6, 4, 7, 2, 5, 7, 6, 7, 3, 8, 8, 7, 4, 8, 5, 7, 6, 6, 5
9	2, 1, 2, 3, 1, 1, 0, 2, 2, 4, 3, 3, 0, 3, 0, 3, 2, 3, 2, 2, 3, 0, 2, 3, 0, 2, 3, 3, 4, 4, 1, 4, 0, 0, 1, 2, 4, 3, 0, 0, 0, 2, 2, 3, 2, 1, 0, 0, 0, 3, 1, 0, 1, 2, 1, 2, 4, 3, 2, 0, 0, 1, 0
10	2, 4, 2, 4, 3, 3, 3, 2, 0, 6, 1, 2, 3, 2, 2, 4, 3, 3, 5, 1, 0, 2, 4, 3, 2, 2, 3, 3, 1, 3, 3, 3, 1, 1, 2, 3, 1, 4, 3, 1, 7, 4, 3, 4, 2, 3, 2, 3, 3, 1, 4, 3, 1, 4, 5, 3, 4, 2, 4, 5, 3, 6, 4, 2
11	1, 2, 0, 2, 1, 2, 1, 3, 1, 0, 1, 0, 3, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 4, 1, 2, 0, 2, 4, 4, 2, 3, 2, 1, 2, 3, 1, 1, 5, 0, 2, 4, 1, 2, 1, 3, 0, 0, 0, 1, 1, 1, 0, 1, 3, 1, 4, 5, 0
12	0, 1, 2, 3, 4, 6, 5, 0, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 2, 3, 3, 4, 4, 5, 2, 4, 4, 3, 3, 3, 2, 3, 0, 5, 2, 3, 3, 4, 4, 4, 3, 2, 5, 3, 3, 2, 4, 4, 3
13	2, 3, 2, 3, 4, 4, 1, 5, 1, 2, 5, 2, 2, 1, 2, 1, 5, 4, 2, 5, 1, 1, 3, 3, 1, 4, 2, 3, 1, 2, 4, 1, 1, 2, 2, 1, 3, 12, 3, 3, 1, 2, 3, 1, 4, 1, 1, 3, 2, 1, 1, 1, 1, 2
14	1, 4, 3, 1, 2, 3, 5, 3, 2, 0, 2, 1, 3, 3, 6, 4, 1, 3, 7, 2, 5, 0, 5, 2, 6, 1, 2, 5, 4, 7, 1, 2, 0, 4, 6, 2, 5, 3, 2, 1, 3, 4, 4, 3, 4, 3, 5, 2, 3, 0, 5, 3, 3, 2
15	10, 33, 44, 55, 44, 33, 22, 11, 33, 55, 44, 33, 22, 11, 55, 22, 33, 33, 33, 44, 55, 11, 22, 33, 33, 44, 22, 44, 33, 22, 11, 10, 33, 22, 44, 33
16	5, 10, 9, 6, 7, 8, 5, 9, 6, 7, 8, 5, 6, 8, 7, 9, 6, 8, 7, 7, 6, 7, 6, 7, 8, 5, 6, 7, 7, 6, 6, 7, 8, 9, 5, 6, 7, 7, 7, 6, 8, 8, 9, 5, 5, 6, 7, 7, 8, 6, 7, 7, 9

Окончание таблицы 3

	T
17	10, 14, 12, 10, 15, 11, 11, 13, 10, 12, 12, 14, 13, 12, 13, 13, 10, 14, 15, 11, 13, 11, 15, 12, 10, 12, 12, 13, 12, 12, 16, 12, 11, 13, 11, 13, 11, 15, 14, 14, 15, 15, 13, 12, 12, 10, 12, 11, 11, 13, 12, 13, 15, 13, 15, 12, 15, 12, 11, 11, 12, 13, 14, 13, 12
18	10, 10, 20, 30, 40, 60, 50, 10, 10, 20, 30, 30, 40, 50, 10, 20, 30, 30, 40, 50, 10, 20, 20, 30, 30, 40, 40, 50, 20, 40, 40, 30, 30, 20, 30, 10, 50, 20, 30, 30, 40, 40, 40, 40, 30, 20, 50, 30, 30, 30, 20, 40, 40, 30
19	13, 17, 16, 14, 11, 14, 12, 14, 16, 15, 13, 12, 9, 10, 15, 16, 17, 17, 13, 11, 15, 15, 14, 12, 16, 12, 11, 15, 13, 13, 11, 15, 16, 14, 14, 13, 14, 11, 15, 15, 13, 14, 13, 17, 14, 15, 16, 17, 15, 12, 14, 16, 16, 17, 17, 13, 15, 14, 14, 13, 15, 15, 17, 16, 16, 11
20	18, 14, 14, 17, 15, 15, 15, 13, 10, 12, 13, 16, 17, 16, 10, 16, 17, 17, 16, 10, 17, 16, 18, 10, 17, 17, 19, 11, 13, 14, 17, 14, 14, 15, 14, 19, 16, 15, 19, 15, 16, 15, 16, 14, 17, 12, 15, 17, 16, 17, 13, 18, 18, 17, 14, 18, 15, 17, 16, 16, 15
21	20, 21, 22, 23, 24, 26, 25, 20, 21, 22, 23, 23, 24, 25, 21, 22, 23, 23, 24, 25, 21, 22, 22, 23, 23, 24, 24, 25, 22, 24, 24, 23, 23, 23, 22, 25, 23, 23, 23, 22, 24, 24, 23, 22, 25, 23, 23, 23, 23, 22, 24, 24, 23
22	52, 53, 52, 53, 54, 54, 51, 55, 51, 52, 55, 52, 52, 51, 52, 51, 55, 54, 52, 55, 51, 51, 53, 53, 51, 54, 52, 53, 51, 52, 54, 51, 51, 52, 52, 51, 53, 52, 53, 53, 51, 52, 53, 51, 54, 51, 51, 53, 52, 51, 51, 51, 51, 52, 52, 51, 51, 51, 52, 52, 51, 51, 51, 52, 53, 51, 52, 53, 51, 52, 53, 51, 52, 53, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51
23	71, 72, 70, 72, 71, 72, 71, 73, 71, 70, 71, 70, 73, 71, 70, 71, 72, 70, 72, 71, 70, 71, 72, 71, 74, 71, 72, 70, 72, 74, 74, 72, 73, 72, 71, 72, 73, 71, 71, 75, 70, 72, 74, 71, 72, 71, 73, 70, 70, 70, 70, 71, 71, 70, 71, 73, 71, 74, 75, 70
24	10, 12, 10, 11, 10, 12, 10, 11, 14, 11, 14, 11, 15, 11, 11, 16, 11, 10, 11, 11, 10, 11, 11, 10, 12, 15, 15, 11, 12, 11, 11, 16, 16, 15, 11, 12, 16, 16, 13, 13, 14, 10, 11, 10, 12, 11, 10, 11, 13, 14, 12, 13, 14, 14, 14, 12, 12, 11, 11, 11, 10, 10, 11, 13, 13, 13
25	18, 14, 14, 17, 15, 15, 15, 13, 12, 12, 13, 16, 17, 16, 13, 16, 17, 17, 16, 14, 17, 16, 18, 15, 17, 17, 19, 17, 15, 14, 17, 14, 14, 15, 14, 19, 16, 15, 19, 15, 16, 15, 16, 14, 17, 18, 15, 17, 16, 17, 18, 18, 18, 17, 14, 18, 15, 17, 16, 16, 15

Задание 2

По данным выборки, приведенным по вариантам в табл. 4, необходимо:

- 1) определить объем выборки, размах распределения, число интервалов по формуле Стерджеса, шаг ряда и составить вариационный ряд;
 - 2) найти средние значения вариантов распределения;
 - 3) вычислить относительные частоты; определить моду;
 - 4) построить гистограмму вариационного ряда;

- 5) составить эмпирическую функцию распределения;
- 6) построить график эмпирической функции распределения;
- 7) построить кумуляту, определить медиану распределения;
- 8) вычислить несмещенные оценки параметров генеральной совокупности $\overline{X}_{\rm B}$, S^2 , S, используя средние значения;
- 9) найти доверительные интервалы для оценки неизвестного математического ожидания a и неизвестного среднего квадратического отклонения σ с заданной надежностью $\gamma = 1-0.01N$, где N номер варианта студента;
- 10) доказать параметрическую гипотезу H_0 о равенстве математического ожидания генеральной совокупности значению, выбранному из доверительного интервала для параметра a (задает преподаватель);
- 11) доказать непараметрическую гипотезу о виде закона распределения генеральной совокупности при уровне значимости $\alpha = 0.01N$.

Таблица 4

№ вар.	Выборка
1	80, 100, 120, 260, 130, 300, 210, 322, 160, 185, 260, 410, 440, 380, 101, 163, 190, 230, 144, 196, 84, 261, 265, 220, 300, 440, 180, 180, 310, 100, 70, 140, 130, 120, 76, 80, 255, 366, 384, 273, 348, 190, 121, 84, 96, 110, 131, 143, 134, 160, 84, 70, 136, 180, 170, 146, 141, 148, 162, 150, 158, 115, 240, 88, 134, 144, 140, 240, 100, 240, 258, 100, 432, 256, 300, 213, 346, 89, 79, 100
2	40, 50, 60, 41, 51, 53, 54, 61, 41, 44, 52, 42, 45, 53, 60, 54, 59, 61, 61, 45, 43, 44, 46, 62, 54, 63, 44, 48, 56, 45, 51, 56, 46, 53, 47, 47, 48, 56, 57, 49, 52, 45, 41, 40, 61, 57, 49
3	24, 18, 23, 24, 20, 24, 18, 24, 24, 20, 19, 21, 22, 22, 23, 23, 20, 21, 23, 24, 20, 21, 22, 20, 23, 20, 23, 24, 23, 24, 24, 24, 16, 23, 22, 22, 17, 17, 19, 24, 20, 20, 21, 22, 21, 22, 22, 23, 23, 22, 23, 23, 22, 23, 24, 23, 21, 21, 22, 20, 22, 23, 18, 19, 21, 22, 24, 20, 19, 20, 21
4	2, 6, 8, 11, 14, 3, 9, 8, 13, 16, 15, 13, 9, 6, 2, 4, 5, 10, 11, 15, 16, 12, 10, 6, 3, 2, 7, 9, 12, 15, 13, 10, 5, 7, 9, 11, 13, 10, 7, 7, 10, 12, 11, 8, 8, 12, 9, 10, 8, 8, 4, 9, 9, 4, 14, 9, 11, 14, 9, 10, 14, 9, 10, 4
5	1700, 1000, 1650, 2000, 2000, 1000, 1400, 1500, 1500, 1700, 1500, 2000, 2000, 2500, 3000, 420, 400, 1800, 1760, 1870, 1300, 1200, 1500, 2000, 2200, 2200, 3200, 2500, 2800, 1750, 1600, 1680, 1600, 800, 1000, 1000, 1020, 1700, 1500, 2500, 2300, 2500, 1800, 1900, 2000, 2000, 2060, 700, 810, 820, 1610, 1700, 1800
6	9, 10, 12, 26, 15, 30, 21, 32, 16, 26, 41, 44, 38, 10, 16, 23, 14, 8, 26, 26, 22, 30, 44, 18, 16, 31, 10, 7, 5, 7, 14, 13, 12, 7, 8, 25, 36, 38, 27, 46, 5, 12, 8, 9, 10, 11, 16, 14, 13, 16, 8, 7, 13, 18, 17, 14, 14, 14, 15, 15, 16, 11, 24, 8, 14, 13, 14, 24, 10, 12, 25, 30, 30, 14

Продолжение таблицы 4

7	7.3; 2.1; 22.1; 3.2; 4.3; 17.9; 7.8; -7; 6.1; 10.7; 7.8; 10.6; 8.1; 9.8; 8.9; 15.5; 14.1; 6.6; 4.; 4.1; 8.7; 6; 9.6; -8.8; 6.7; 1.5; 3; 6.8; 12.4; 9.2; 7.3; 12.5; 15.7; -0.7; 15.5; 16.8; 4.3; 9.6; -4.9; 8.8; -4.2; 12.3; 7.2; 1; 0.3; -0.1; 18.5; 8.8; 8.1; -1.2; 8.5; -6.3; 5.5; 12.3; 11.2
8	16.8; 2.6; 11.6; 2.7; 8.7; 6.4; 10.5; 2.7; 1.3; 4; 4.8; 10.7; 5.9; 4.9; 8.4; 7.3; 9.8; 5.5; 12.3; 7.1; 10.8; 3.1; 10.2; 9.4; 9.4; 10.4; 14.5; 12.5; 15.1; 3.8; 16.9; 8.3; 6.9; 6; 19.9; 18.3; 12.8; 21.5; 12.4; 7; 8.1; 4.7; 11.7; 2.3; 9.2; 18.2; 7.1; 16.7; 11.4
9	2.4; 10.7; 0.4; 15; 6.7; 10.3; 10; 7.7; 6.4; 3.4; 12; 7.1; 1.3; 8.7; 17.1; 21; 6; 10; 6; 11.2; 11.4; 2.9; 9.2; 5; 20.9; 27.5; 6.5; 10; 12.8; 12.4; 18.8; 0.8; 16.4; 9.4; 3.9; 2.2; 7.9; 7.7; 6.8; 11.6; 7.9; 8.1; 16.2; 9.4; 9.9; 9.2; 6; 0.9; 0.3; 4.1; 0.4; 5.5; 7.2; 6.3; 4.5; 8.2; 4.3; 5; 6.3; 7.2
10	0.02; 0.02; 0.03; 0.04; 0.06; 0.06; 0.08; 0.09; 0.09; 0.24; 0.43' 0.77; 2.05; 1.43; 0.71; 0.41; 0.22; 0.20; 0.19; 0.39; 0.4; 0.61; 0.69; 0.71; 0.41; 1.42; 1.15; 0.39; 0.61; 1.09; 0.17; 0.36; 0.6; 0.66; 1.05; 0.16; 0.18; 0.59; 0.92; 0.15; 0.28; 0.59; 0.9; 0.14; 0.28; 0.59; 0.81; 0.13; 0.27; 0.5; 0.81; 0.12; 0.26; 0.47; 0.86; 1.23; 0.58;0.36; 1.12
11	0.2; 0.2; 0.3; 0.4; 0.6; 0.6; 0.8; 0.9; 0.9; 0.4; 0.3; 0.7; 2.5; 1.3; 0.1; 0.1; 0.2; 0.2; 0.9; 0.9; 0.4; 0.1; 0.9; 0.1; 1.1; 1.2; 1.5; 0.9; 0.1; 1.9; 0.7; 0.6; 0.6; 0.6; 1.5; 0.6; 0.8; 0.9; 0.2; 0.5; 0.8; 0.9; 0.9; 0.4; 0.8; 0.9; 0.1; 0.3; 0.7; 0.5; 0.1; 0.2; 0.6; 0.7; 0.6; 1.3; 0.8; 0.6; 1.2
12	0; 0.2; 0.3; 0.4; 0.6; 0; 0.8; 0.9; 0; 0.2; 0.4' 0.7; 2.; 1.4; 0.7; 0.4; 0.2; 0.2; 0.1; 0.3; 0.4; 0.1; 0.6; 0.7; 0.4; 1.4; 1.1; 0.3; 0.6; 1; 0.1; 0.3; 0.6; 0.6; 1; 0.1; 0.1; 0.1; 0.9; 0.9; 0.1; 0.2; 0.5; 0.9; 0.1; 0.2; 0.5; 0.8; 0.1; 0.7; 0.8; 0.8; 0.1; 0.2; 0.7; 0.8; 1.2; 0.5; 0.3; 1.1
13	91, 120, 112, 126, 145, 130, 241, 132, 116, 126, 241, 144, 138, 110, 116, 123, 114, 18, 126, 126, 122, 130, 144, 118, 116, 131, 210, 87, 85, 67, 114, 113, 112, 87, 98, 125, 136, 148, 217, 146, 95, 112, 88, 99, 110, 111, 116, 114, 113, 116, 98, 97, 113, 118, 117, 114, 114, 114, 115, 115, 116, 111, 124, 88, 114, 113, 114, 124, 110, 112, 125, 130, 130, 114
14	91, 101, 121, 261, 152, 302, 212, 325, 164, 265, 415, 445, 381, 105, 165, 235, 147, 81, 126, 261, 221, 304, 444, 189, 164, 314, 108, 147, 415, 147, 514, 413, 712, 127, 148, 425, 536, 538, 427, 461, 415, 412, 148, 129, 210, 116, 164, 147, 135, 165, 128, 147, 213, 218, 217, 414, 514, 214, 315, 315, 416, 151, 234, 248, 514, 133, 145, 244, 210, 312, 325, 430, 230, 414
15	0.9, 0.10, 0.12, 0.26, 0.15, 0.30, 0.21, 0.32, 0.16, 0.26, 0.41, 0.44, 0.38, 0.10, 0.16, 0.23, 0.14, 0.8, 0.26, 0.26, 0.22, 0.30, 0.44, 0.18, 0.16, 0.31, 0.10, 0.7, 0.5, 0.7, 0.14, 0.13, 0.12, 0.7, 0.8, 0.25, 0.36, 0.38, 0.27, 0.46, 0.5, 0.12, 0.8, 0.9, 0.10, 0.11, 0.16, 0.14, 0.13, 0.16, 0.80, 0.7, 0.13, 0.18, 0.17, 0.14, 0.14, 0.14, 0.15, 0.15, 0.16, 0.11, 0.24, 0.8, 0.14, 0.13, 0.14, 0.24, 0.10, 0.12, 0.25, 0.30, 0.30
16	0.40, 0.50, 0.60, 0.41, 0.51, 0.53, 0.54, 0.61, 0.41, 0.44, 0.52, 0.42, 0.45, 0.53, 0.60, 0.54, 0.59, 0.61, 0.61, 0.45, 0.43, 0.44, 0.46, 0.62, 0.54, 0.63, 0.44, 0.48, 0.56, 0.45, 0.51, 0.56, 0.46, 0.53, 0.47, 0.47, 0.48, 0.56, 0.57, 0.49, 0.52, 0.45, 0.41, 0.40, 0.61, 0.57, 0.49
17	4.5,4.0, 4.1, 5.1, 5.3, 5.4, 6.1, 4.1, 4.4, 5.2, 4.2, 4.5, 5.3, 6.0, 5.4, 5.9, 6.1, 6.1, 4.5, 4.3, 4.4, 4.6, 6.2, 5.4, 6.3, 4.4, 4.8, 5.6, 4.5, 5.1, 5.6, 4.6, 5.3, 4.7, 4.7, 4.8, 5.6, 5.7, 4.9, 5.2, 4.5, 4.1, 4.0, 6.1, 5.7, 4.9

18	2.4, 1.8, 2.3, 2.4, 2.0, 2.4, 1.8, 2.4, 2.4, 2.0, 1.9, 2.1, 2.2, 2.2, 2.3, 2.3, 2.0, 2.1, 2.3, 2.4, 2.0, 2.1, 2.2, 2.0, 2.3, 2.0, 2.3, 2.4, 2.3, 2.4, 2.4, 2.4, 1.6, 2.3, 2.2, 2.2, 1.7, 1.7, 1.9, 2.4, 2.0, 2.0, 2.1, 2.2, 2.1, 2.2, 2.2, 2.2, 2.3, 2.3, 2.2, 2.3, 2.3
19	21, 61, 81, 111, 114, 31, 91, 81, 113, 161, 115, 113, 91, 61,12 2,8 4, 85, 110, 111, 115, 116, 112, 110, 67,11 3, 112, 79, 99, 112, 115, 113, 110, 115, 117, 119, 111, 113, 110, 117, 117, 110, 112, 111, 118, 118, 112, 119, 110, 118, 118, 114, 98, 99, 114, 114, 119, 111, 114, 119, 110, 114, 119, 110, 114
20	91, 101, 121, 216, 151, 310, 211, 312, 161, 216, 411, 414, 381, 110, 161, 231, 141, 81, 261, 261, 221, 301, 414, 181, 161, 311, 101, 79, 59, 79, 141, 131, 121, 79, 89, 251, 361, 381, 271, 461, 151, 121, 89, 99, 109, 119, 169, 141, 131, 161, 89, 79, 139, 181, 171, 141, 141, 141, 151, 151, 169, 119, 241, 89, 149, 139, 141, 242, 105, 121, 251, 301, 301, 141
21	400, 500, 600, 401, 510, 530, 540, 610, 410, 440, 520, 420, 450, 530, 600, 540, 590, 610, 610, 450, 430, 440, 460, 620, 540, 630, 440, 480, 560, 450, 510, 560, 460, 530, 470, 470, 480, 560, 570, 490, 520, 450, 410, 400, 610, 570, 490
22	170, 100, 160, 200, 200, 100, 140, 150, 150, 170, 150, 200, 200, 250, 300, 420, 400, 180, 176, 180, 130, 120, 150, 200, 220, 220, 320, 250, 280, 170, 160, 180, 160, 800, 100, 120, 170, 150, 250, 230, 250, 180, 190, 200, 200, 260, 700, 810, 820, 160, 170, 180
23	2, 2.6, 2.8, 1.1, 1.4, 0.3, 0.9, 0.8, 0.13, 0.16, 0.15, 1.13, 0.9, 0.6, 0.2, 0.4, 0.5, 0.10, 0.11, 0.15, 0.16, 1.12, 1.10, 0.6, 0.3, 1.2, 0.7, 0.9, 1.12, 0.15, 0.13, 1.10, 0.5, 0.7, 0.9, 1.11, 0.13, 1.10, 0.7, 0.7, 0.10, 0.12, 0.11, 0.8, 0.8, 0.12, 0.9, 1.10, 0.8, 0.8, 1.4, 0.9, 0.9, 0.4, 1.14, 0.9, 1.11, 0.14, 0.9, 1.20, 1.14, 0.9, 0.10, 0.4
24	21, 26, 28, 11, 14, 23, 19, 18, 13, 16, 15, 13, 29, 16, 22, 14, 15, 10, 11, 15, 16, 12, 10, 16, 13, 12, 17, 19, 12, 15, 13, 10, 15, 17, 19, 11, 13, 10, 17, 17, 10, 12, 11, 18, 18, 12, 19, 10, 18, 18, 14, 19, 19, 14, 14, 19, 11, 14, 29, 10, 14, 29, 10, 24, 22, 23
25	140, 150, 160, 141, 151, 153, 154, 161, 141, 144, 152, 142, 145, 153, 160, 154, 159, 161, 161, 145, 143, 144, 146, 162, 154, 163, 144, 148, 156, 145, 151, 156, 146, 153, 147, 147, 148, 156, 157, 149, 152, 145, 141, 140, 161, 157, 149

Решение примерных заданий контрольной работы

Пример 1. В рынке подсчитывали количество покупателей X, совершивших покупки с 10 часов утра до 11 часов в течение 30 дней. Были получены следующие результаты: 100, 100, 120, 75, 75, 60, 120, 100, 70, 70, 65, 60, 100, 120, 120, 65, 60, 70, 70, 75, 100, 100, 70, 70, 65.

Требуется составить ряд распределения частот.

В данном вариационном ряде шесть различных вариант (шесть групп). Для каждой варианты подсчитаем ее частоту (количество повторений) и соответствующую относительную частоту. Все результаты запишем в табл. 5.

Таблица 5

Номер группы	i	1	2	3	4	5	6
Число покупателей	x_i	60	65	70	75	100	120
Частота	n_i	3	3	7	5	8	4
Относительная частота	P_i^*	$\frac{3}{30}$	$\frac{3}{30}$	$\frac{7}{30}$	$\frac{5}{30}$	$\frac{8}{30}$	$\frac{4}{30}$

Контроль:
$$\sum_{i=1}^{6} P_i^* = 1$$
.

Пример 2. По списку на предприятии числится 30 рабочих, которые имеют следующие разряды: 1, 4, 2, 3, 4, 4, 5, 6, 2, 4, 5, 6, 2, 4, 3, 5, 5, 1, 3, 5, 4, 2, 4, 2, 4, 1, 5, 1, 3, 4.

Составить распределение частот и относительных частот. Построить полигон частот и полигон относительных частот. Найти моду \boldsymbol{M}_0 , медиану \boldsymbol{M}_a и размах варьирования \boldsymbol{R} .

Решение. Объём выборки n=30. Варианты выборки 1, 2, 3, 4, 5, 6. Частоты выборки n_i - количество вариант в выборке. Составляем ряд распределение частот (табл. 6):

Таблииа 6

x_i	1	2	3	4	5	6
n_{i}	4	5	4	9	6	2

Для контроля найдём
$$\sum_{i=1}^{k} n_i = 4 + 5 + 4 + 9 + 6 + 2 = 30 = n$$
.

По данным таблицы строим полигон частот, откладывая по оси OX значения вариант x_i , а по оси OY откладываем соответствующие им частоты (рис. 8).



Далее находим относительные частоты: $w_i = \frac{n_i}{n}$ и составляем распределение относительных частот (табл. 7):

Таблица 7

X_i	1	2	3	4	5	6
W_{i}	$\frac{4}{30} = 0.13$	$\frac{5}{30} = 0.17$	$\frac{4}{30} = 0.13$	$\frac{9}{30} = 0.3$	$\frac{6}{30} = 0.2$	$\frac{2}{30} = 0.07$

Контроль:
$$\sum_{i=1}^{k} w_i = 1$$
.

Построим полигон относительных частот, откладывая вдоль оси OX варианты x_i , а вдоль оси OY соответствующие им относительные частоты w_i .

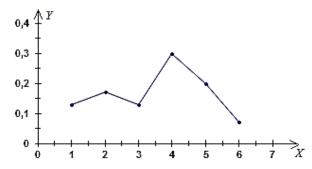


Рис. 9. Полигон относительных частот

Так как мода M_0 равна варианте с наибольшей частотой, то по составленной таблице распределения частот находим, что наибольшей частоте n_4 = 9 соответствует варианта x_4 = 4, которая и является модой: M_0 = x_4 = 4.

Так как медиана равна варианте, которая делит вариационный ряд пополам, то в нашем случае, для k=6 – чётное, получаем, что

$$m = \frac{k}{2} = \frac{6}{2} = 3$$
, а, следовательно: $M_e = \frac{x_m + x_{m+1}}{2} = \frac{3+4}{2} = 3,5$.

Так как для нашего ряда распределения $x_{\max} = 6$, $x_{\min} = 1$, то размах варьирования R будет равен R = 6 - 1 = 5.

Ответ:
$$M_0 = 4$$
, $M_e = 3.5$, $R = 5$.

Пример 3. Получены данные о зарплате (в USD) сотрудников фирмы: 218, 221, 215, 225, 225, 217, 224, 220, 220, 219, 221, 219, 222, 226, 218, 220, 223, 230, 223, 216, 224, 228, 220, 222.

Построить гистограмму частот, если число частичных интервалов принять равным 6.

Найти: 1) среднюю зарплату; 2) выборочные дисперсию и среднее квадратичное отклонение; 3) исправленное среднее квадратичное отклонение; 4) доверительные интервалы для оценки генеральной средней по выборочной средней и для оценки генерального среднего квадратичного отклонения по исправленному среднему квадратичному отклонению с надёжностью $\gamma = 0.99$, предполагая, что генеральная совокупность имеет нормальное распределение.

Решение. По данной выборке определяем $x_{\max} = 230, \ x_{\min} = 215.$ По условию k=6, поэтому длина частичного интервала:

$$h = \frac{x_{\text{max}} - x_{\text{min}}}{6} = 2.5$$
.

Группируем все данные выборки в 5 частичных интервалов длины 2,5 и подсчитываем число вариант, попавших в каждый интервал:

- 1. [215;217,5) содержит n_1 = 3 215, 216, 217
- 2. [217,5;220) содержит $n_2 = 4$ 218, 218, 219, 219
- 3. [220;222,5) содержит $n_3 = 8$ 220, 220, 220, 221, 220, 222, 221, 222

4. [222,5;225) содержит
$$n_4$$
 = 4 223, 224, 223, 224

5.
$$[225;227,5)$$
 содержит $n_5 = 3$ 225, 226, 225

6.
$$[227,5;230]$$
 содержит $n_6 = 2$ 230, 228

Найдем высоту каждого частичного интервала по формуле:

 $h_i = \frac{n_i}{h}$. Полученные данные занесем в табл. 8:

Таблица 8

i	Частичный интервал $\left[x_{i}; x_{i+1}\right)$	Сумма частот n_i	Высота $h_i^ i$ – го частичного интервала
1	215 – 217,5	3	1,2
2	217,5 – 220	4	1,6
3	220 - 222,5	8	3,2
4	222,5 – 225	4	1,6
5	225 – 227,5	3	1,2
6	227,5 – 230	2	0,8

По полученным данным строим гистограмму частот, откладывая вдоль оси OX частичные интервалы, а вдоль оси OY их высоты (рис. 10).

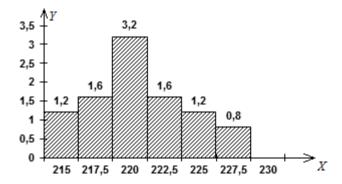


Рис. 10. Гистограмма частот

Для нахождения числовых характеристик распределения, заполним вспомогательную табл. 9, переходя к условным вариантам u_i , равным серединам указанных частичных интервалов

$$u_i = \frac{x_i + x_{i+1}}{2}.$$

Таблица 9

i		цы ин- вала	Сере- дины	Час- тоты	$n_i u_i$	u_i^2	$n_i u_i^2$
	\mathcal{X}_{i}	X_{i+1}	u_{i}	n_{i}	reicei	u_i	$n_i u_i$
1	215	217,5	216,25	3	648,75	46764,062	140292,186
2	217,5	220	218,75	4	875	47851,562	191406,248
3	220	222,5	221,25	8	1770	48951,562	391612,496
4	222,5	225	223,75	4	895	50064,062	200256,248
5	225	227,5	226,25	3	678,75	51189,062	153567,186
6	227,5	230	228,75	2	457,5	52326,562	104653,124
		\sum_{i}	1335	24	5325		1181787,488

Последняя строка табл. 9 содержит суммы по столбцам. Используя результаты последней строки, находим:

1. выборочную среднюю:
$$\overline{x_{_{\rm B}}} = \frac{1}{n} \cdot \sum_{i=1}^{k} n_i u_i = \frac{5325}{24} = 221,875;$$

2. среднее значение квадратов:
$$\overline{x_{\rm B}^2} = \frac{1}{n} \sum_{i=1}^n n_i u_i^2 = 49241,15;$$

3. выборочную дисперсию:
$$D_{\scriptscriptstyle \rm B} = \overline{x_{\scriptscriptstyle \rm B}^2} - (\overline{x_{\scriptscriptstyle \rm B}})^2 =$$
 = $49241.15 - (221.875)^2 = 12.63;$

- 4. выборочное среднеквадратичное отклонение: $\sigma_{_{\rm B}} = \sqrt{D_{_{\rm B}}} = 3{,}55;$
- 5. исправленное среднеквадратичное отклонение:

$$S = \sqrt{\frac{n}{n-1} \cdot D_{\scriptscriptstyle B}} = \sqrt{\frac{24 \cdot 12,63}{24-1}} = 3,63.$$

Далее находим доверительные интервалы.

Так как среднеквадратичное отклонение генеральной совокупности неизвестно, то для нахождения доверительного интервала

$$\overline{x_{_{\rm B}}} - \delta < x_{_{\rm T}} < \overline{x_{_{\rm B}}} + \delta$$

следует использовать распределение Стьюдента.

По заданной надёжности $\gamma=0.99$ и объёму выборки n=24 из табл. значений распределения Стьюдента (Приложение 3) находим $t_{\gamma}=t(\gamma;n)=t(0.99;24)=2.797.$

Находим точность оценки

$$\delta = \frac{\mathbf{t}_{\gamma} \cdot S}{\sqrt{n}} = \frac{2,797 \cdot 3,63}{\sqrt{24}} = 2,072,$$

Вычисляем нижнюю и верхнюю границы интервалов:

$$\frac{\overline{x}_{B}}{x_{B}} - \delta = 221,875 - 2,072 = 219,803;$$
$$\frac{\overline{x}_{B}}{x_{B}} + \delta = 221,875 + 2,072 = 223,947.$$

Следовательно, доверительный интервал для генеральной средней по выборочной средней имеет вид: $219,803 < x_{\Gamma} < 223,947$.

Найдём доверительный интервал для оценки генерального среднеквадратичного отклонения по исправленному выборочному среднеквадратичному отклонению. По специальной табл. (Приложение 4) находим для $\gamma=0.99$ и n=24 значение $q=q(n,\ \gamma)=q(24;0.99)=0.49<1$. Вычисляем границы доверительного интервала:

$$S(1-q) = 3,63(1-0,49) = 1,851;$$

 $S(1+q) = 3,63(1+0,49) = 5,409.$

Таким образом, доверительный интервал имеет вид: 1,851 < δ_{Γ} < 5,409.

Otbet:
$$\overline{X_{\rm B}} = 221,875; \ D_{\rm B} = 12,63; \ \sigma_{\rm B} = 3,55; \ S = 3,63;$$

$$219,803 < x_{\rm T} < 223,947; \ 1,851 < \delta_{\rm T} < 5,409.$$

Пример 4. Пусть дан ряд распределения производственного стажа на одном из предприятий (в годах) для 60 работников:

Требуется построить интервальный вариационный ряд.

Решение. Количество интервалов найдем по формуле Стерджесса

$$k = 1 + 3{,}322 \lg 60 \approx 6{,}907; \quad k = 7.$$

Найдем длину частичного интервала

$$h = \frac{x_{\text{max}} - x_{\text{min}}}{k} = \frac{15 - 4}{7} \approx 1,6.$$

Разобьем интервал изменения X (количество лет стажа) на 7 интервалов с шагом h=1,6 и подсчитаем число работников в каждом интервале. Результаты вычислений запишем в табл. 10.

Таблица 10

Частичные интервалы $\left(x_{i-1}; x_i\right)$	Число работников в группе, n_i	Относительная частота $P_i^* = rac{n_i}{n}$
4-5,6	5	5/60
5,61 – 7,2	17	17/60
7,21 – 8,8	9	9/60
8,81 – 10,4	15	15/60
10,41 - 12,0	10	10/60
12,01 – 13,6	1	1/60
13,61 – 15,2	3	3/60
сумма	60	1

Пример 5. Найти эмпирическую функцию по данному распределению выборки (табл. 11):

Таблица 11

варианты x_i	5	7	10	12
частоты n_i	3	5	10	2

Решение. Объем выборки
$$n = \sum_{i=1}^4 n_i = 3 + 5 + 10 + 2 = 20$$
.

Наименьшая варианта $x_{\min} = 5$, поэтому $F^*(x) = 0$, при $x \le 5$;

Наибольшая варианта $x_{\text{max}} = 12$, поэтому $F^*(x) = 1$, при $x \ge 5$.

Результаты вычислений $F^*(x)$ приведены в табл. 12:

Таблица 12

x	$F^*(x)$
<i>x</i> ≤ 5	0
5 < <i>x</i> ≤ 7	$P_1^* = \frac{3}{20} = 0.15$
$7 < x \le 10$	$P_1^* + P_2^* = \frac{3}{20} + \frac{5}{20} = 0.4$
$10 < x \le 12$	$P_1^* + P_2^* + P_3^* = \frac{18}{20} = 0.9$
12 < x	$P_1^* + P_2^* + P_3^* + P_4^* = 1$

Таким образом, искомая эмпирическая функция определяется формулами

$$F^*(x) = \begin{cases} 0, \text{ если } x \le 5, \\ 0,15, \text{ если } 5 < x \le 7, \\ 0,4, \text{ если } 7 < x \le 10, \\ 0,9, \text{ если } 10 < x \le 12, \\ 1, \text{ если } x > 12. \end{cases}$$

График эмпирической функции изображен на рис. 11.

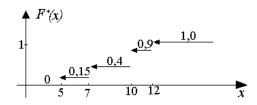


Рис. 11 График эмпирической функции распределения

Пример 6. Случайная величина X имеет нормальное распределение с известным средним квадратическим отклонением $\sigma=3$. Найти доверительный интервал для оценки неизвестного математического ожидания при заданной надежности оценки $\gamma=0.95$, если объем выборки n=36.

Решение. Имеем

$$P\left(x_{\rm B} - \frac{t\sigma}{\sqrt{n}} < a < x_{\rm B} + \frac{t\sigma}{\sqrt{n}}\right) = 2\Phi(t).$$

По табл. интегральной функции Лапласа $\Phi(t)$ (Приложение 2) найдем значение t

$$2\Phi(t) = 0.95$$
; $t = 1.96$.

Тогда точность оценки

$$\delta = \frac{t\sigma}{\sqrt{n}} = 1.96 \cdot \frac{3}{\sqrt{36}} = 0.98.$$

Доверительный интервал имеет вид

$$x_{_{\rm B}} - 0.98 \le a \le x_{_{\rm B}} + 0.98$$
.

Otbet: $x_{\rm B} - 0.98 \le a \le x_{\rm B} + 0.98$.

Пример 7. Случайная величина X имеет нормальное распределение с неизвестным математическим ожиданием a и неизвестным средним квадратическим отклонением σ . По выборке объема n=16 получены значения выборочной средней $x_{\rm B}=20,2$ и «исправленное» среднее квадратическое отклонение S=0,8. Оценить неизвестное математическое ожидание (найти доверительный интервал) с надежностью $\gamma=0,95$.

Решение. По табл. распределения Стьюдента (Приложение 3) найдем значение t_{γ} . При n=16; $\gamma=0.95$ получим $t_{\gamma}=2.13$.

Тогда,

$$x_{\rm B} - t_{\gamma} \cdot \frac{S}{\sqrt{n}} = 20.2 - 2.13 \cdot \frac{0.8}{\sqrt{16}} = 19.77;$$

$$x_{\rm B} + t_{\gamma} \cdot \frac{S}{\sqrt{n}} = 20.2 + 2.13 \cdot \frac{0.8}{\sqrt{16}} = 20.63.$$

Значит, с надежностью $\gamma = 0.95$ математическое ожидание *а* заключено в интервале (19,77; 20,63).

Ответ: (19,77; 20,63).

Пример 8. Генеральная совокупность имеет нормальное распределение. По выборке объема n=25 получено значение «исправленного» среднего квадратического отклонения S=0.8. Найти

доверительный интервал, покрывающий генеральное среднее квадратическое отклонение σ с надежностью $\gamma = 0.95$.

Решение. По табл. специальной табл. (Приложение 4) при условии $n=25,\ \gamma=0.95$ находим q=0.32. Найдем доверительный интервал

$$0.8(1-0.32) < \sigma < 0.8(1+0.32);$$

 $0.54 < \sigma < 1.06.$

Ответ: $0.54 < \sigma < 1.06$.

Пример 9. Генеральная совокупность имеет нормальное распределение. По выборке объема n=10 получено значение «исправленного» среднего квадратического отклонения S=0,16. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение σ с надежностью $\gamma=0,999$.

Решение. По табл. Приложения 4 при условии, что n=10, $\gamma=0,999$, находим q=1,8. Так как значение S(1-q)=0,16(1-1,8)<0, то левый конец интервала берем равным нулю.

Найдем доверительный интервал $0 < \sigma < 0.16 \cdot (1+1.8)$.

Otbet: $0 < \sigma < 0.45$.

Пример 10. Известны данные выборки генеральной непрерывной совокупности случайной величины X (табл. 13):

0.70 -0.281.24 2.28 2.20 2.73 -1.180.77 2.10 -0.09 0.31 0,23 -0.69-0.850,02 -1.120,43 0,60 1,13 0,63 0.67 0.63 2.34 0.91 0.81 0.49 2.97 1.66 3.38 0.35 -0.61 1.54 1.72 0.92 0.62 2.66 1.90 0.48 1.68 1.76 0.44 0.15 0.52 0.64 0.97 1.03 0.68 3.10 -0.740,26

Таблица 13

- 1) Составить интервальный ряд распределения.
- 2) Построить эмпирическую функцию распределения, ее график и кумуляту.
 - 3) Построить гистограмму и полигон.
- 4) Получить точечные статистические оценки параметров распределения.
- 5) Построить теоретическую кривую и выдвинуть гипотезу о законе распределения.

 Доказать приятую гипотезу. Найти доверительные интервалы для параметров распределения.

Решение.

- Составим интервальный ряд распределения.
- 1) Упорядочим выборку, т.е. составим вариационный ряд (табл. 14):

Таблица 14

-1,18	-1,12	-0,85	-0,74	-0,69	-0,61	-0,28	-0,09	0,02	0,15
0,23	0,26	0,31	0,35	0,43	0,44	0,48	0,49	0,52	0,60
0,62	0,63	0,63	0,64	0,67	0,68	0,70	0,77	0,81	0,91
0,92	0,97	1,03	1,13	1,24	1,54	1,66	1,68	1,72	1,76
1,90	2,10	2,20	2,28	2,34	2,66	2,73	2,97	3,10	3,38

- 2) $X_{\min} = 1,18; X_{\max} = 3,38;$ объем выборки n = 50.
- 3) Диапазон выборки [-1,18; 3,38].
- 4) Размах выборки $R_{\scriptscriptstyle \rm B} = 3.38 + 1.18 = 4.56$.
- 5) Количество интервалов, вычисленное по формуле Стерджесса

$$k = 1 + 3{,}322 \lg 50 \approx 6$$
.

- 6) Длина интервала $h = \frac{4,56}{6} = 0,76.$
- 7) Границы интервалов вариационного ряда (табл. 14):

$$a_0 = -1.18$$
, $a_1 = -0.42$, $a_2 = 0.34$, $a_3 = 1.10$, $a_4 = 1.86$, $a_5 = 2.62$, $a_6 = 3.38$

8) Интервалы:

$$I_0 = (-\infty; -1.18);$$
 $I_1 = [-1.18; -0.42);$ $I_2 = [-0.42; 0.34);$
 $I_3 = [0.34; 1.10);$ $I_4 = [1.10; 1.86);$ $I_5 = [1.86; 2.62);$ $I_6 = [2.62; 3.38]$

9) Число выборочных значений, попавших в каждый интервал:

$$n_1=6;$$
 $n_2=7;$ $n_3=20;$ $n_4=7;$ $n_5=5;$ $n_6=5$
Контроль $\sum_{i=1}^6 n_i=6+7+20+7+5+5=50$

10) Частоты интервального ряда

$$p_1^* = \frac{6}{50} = 0.12;$$
 $p_2^* = \frac{7}{50} = 0.14;$ $p_3^* = \frac{20}{50} = 0.4;$ $p_4^* = \frac{7}{50} = 0.14;$ $p_5^* = \frac{5}{50} = 0.1;$ $p_6^* = \frac{5}{50} = 0.1$

Контроль
$$\sum_{i=1}^{6} = 0,12 + 0,14 + 0,4 + 0,14 + 0,1 + 0,1 = 1.$$

11) Середины интервалов:

$$\begin{split} \widetilde{x}_1 &= \frac{-1,18-0,42}{2} = -0,8; \quad \widetilde{x}_2 &= \frac{-0,42+0,34}{2} = -0.04; \quad \widetilde{x}_3 &= \frac{0,34+1,1}{2} = 0,72; \\ \widetilde{x}_4 &= \frac{1,1+1,86}{2} = 1,48; \quad \widetilde{x}_5 &= \frac{1,86+2,62}{2} = 2,24; \quad \widetilde{x}_6 &= \frac{2,62+3,38}{2} = 3,00. \end{split}$$

Интервальный статистический ряд запишем в табл. 15

Таблица 15

I_i	I_1	I_2	I_3	I_4	I_5	I_6	Σ
\widetilde{x}_i	-0,8	-0,04	0,72	1,48	2,24	3,00	1
n_i	6	7	20	7	5	5	50
\widetilde{p}_i	0,12	0,14	0,4	0,14	0,1	0,1	1

- Построим эмпирическую функцию распределения, ее график и кумуляту.
 - 1) Вычислим накопленные частоты

$$\begin{split} Z_1 &= p_1^* = 0.12; \\ Z_2 &= p_1^* + p_2^* = 0.12 + 0.14 = 0.26; \\ Z_3 &= p_1^* + p_2^* + p_3^* = 0.26 + 0.4 = 0.66; \\ Z_4 &= p_1^* + p_2^* + p_3^* + p_4^* = 0.66 + 0.14 = 0.80; \\ Z_5 &= p_1^* + p_2^* + p_3^* + p_4^* + p_5^* = 0.80 + 0.1 = 0.90; \\ Z_6 &= \sum_{i=1}^6 p_i = 0.9 + 0.1 = 1. \end{split}$$

2) Дискретный статистический ряд, в котором указаны середины интервалов \tilde{x}_i , частоты p_i^* и накопленные частоты Z_i представлены в табл. 16.

Таблица 16

\widetilde{x}_i	-0,8	-0,04	0,72	1,48	2,24	3,00	\sum
p_i^*	0,12	0,14	0,4	0,14	0,1	0,1	1
Z_{i}	0,12	0,26	0,66	0,8	0,9	1	-

3) Эмпирическая функция распределения $F_n^{\ *}(x)$ вычисляется через накопленные частоты Z_i и имеет вид:

$$F_n^*(x) = \begin{cases} 0, & x \le -0.80; \\ 0.12, & -0.80 < x \le -0.04; \\ 0.26, & -0.04 < x \le 0.72; \\ 0.66, & 0.72 < x \le 1.48; \\ 0.80, & 1.48 < x \le 2.24; \\ 0.90, & 2.24 < x \le 3.00; \\ 1.00, & x > 3.00. \end{cases}$$

4) График функции распределения $F_n^*(x)$ и кумулята построены на рис. 12, 13.

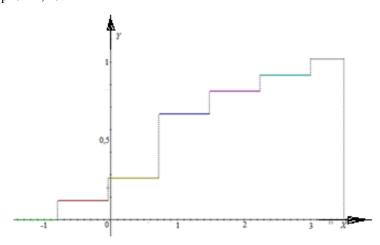


Рис. 12 График эмпирической функции распределения

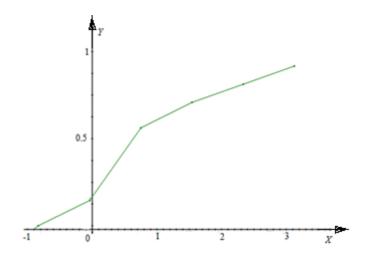


Рис. 13 График кумуляты

3. Построим гистограмму и полигон распределения.

Вычислим значения f_n^* :

$$f_1^*(x) = \frac{0.12}{0.76} = 0.16; \quad f_2^*(x) = \frac{0.14}{0.76} = 0.18;$$

$$f_3^*(x) = \frac{0.40}{0.76} = 0.53; \quad f_4^*(x) = \frac{0.14}{0.76} = 0.18;$$

$$f_5^*(x) = \frac{0.10}{0.76} = 0.13; \quad f_6^*(x) = \frac{0.10}{0.76} = 0.13$$

Построим гистограмму и полигон (рис. 14).

- **4.** Получим точечные статистические оценки параметров распределения.
 - 1) Выборочное среднее

$$\bar{x} = -0.8 \cdot 0.12 - 0.04 \cdot 0.14 + 0.72 \cdot 0.4 + 1.48 \cdot 0.14 + 2.24 \cdot 0.10 + 3 \cdot 0.10 = 0.92$$

2) Выборочная дисперсия $D_{\scriptscriptstyle \mathrm{B}}$:

$$D_{B} = (-0.8)^{2} \cdot 0.12 + (-0.04)^{2} \cdot 0.14 + 0.72^{2} \cdot 0.4 + 1.48^{2} \cdot 0.14 + 2.24^{2} \cdot 0.1 + 3^{2} \cdot 0.1 - 0.92^{2} = 1.12$$

3) Исправленная выборочная дисперсия $S^{\,2}\,$ и исправленное выборочное S :

$$S^2 = \frac{50}{49}D_{\rm B} = \frac{50}{49 \cdot 1.12} = 1,14; \quad S = \sqrt{1,14} = 1,07$$

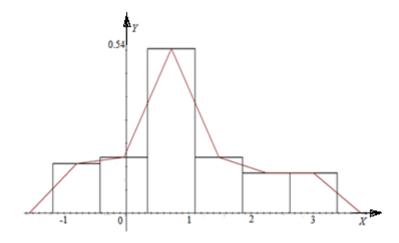


Рис. 14 Гистограмма и полигон распределения

4) Выборочная медиана
$$M^* = \frac{x_{25}^* + x_{26}^*}{2} = \frac{0,67 + 0,68}{2} = 0,675$$

5) Выборочная асимметрия и эксцесс

$$A^* = \frac{1}{1,07^3} \left[(-0,08 - 0,92)^3 \cdot 0,12 + (-0,04 - 0,92)^3 \cdot 0,14 + (0,72 - 0,92)^3 \cdot 0,4 + (1,48 - 0,92)^3 * 0,14 + (2,24 - 0,92)^3 * 0,1 + (3 - 0,92)^3 * 0,1 \right] = 0,31$$

$$E^* = \frac{1}{1,07^4} \left[(-0,8 - 0,92)^4 \cdot 0,12 + (-0,04 - 0,92)^4 \cdot 0,14 + (0,72 - 0,92)^4 \cdot 0,4 + (1,48 - 0,92)^4 \cdot 0,14 + (2,24 - 0,92)^4 \cdot 0,1 + (3 - 0,92)^4 \cdot 0,1 \right] - 3 = -0,23$$

5. Построим теоретическую кривую и докажем гипотезу о законе распределения.

Поскольку для нормального распределения асимметрия и эксцесс равны нулю, то достаточно малые значения A^* и E^* , а так же вид гистограммы позволяют выдвинуть гипотезу о нормальном распределении генеральной совокупности.

Построим теоретическую кривую-график плотности нормального распределения, параметрами которого будут вычисленные статистические оценки. Для этого в точках, являющихся серединами интервалов, вычислим значения плотностей нормального распределения с параметрами $a=\bar{x}=0.92$ и $\delta=\bar{s}=1.07$ по формуле:

$$f(x) = \frac{1}{\sqrt{2\pi\delta}} e^{\frac{-(x-a)^2}{2\delta^2}}$$
 или $f(x) = \frac{1}{\delta} \varphi \left(\frac{x-a}{\delta}\right)$,

в которой значения функции Гаусса $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ можно найти

в таблице Приложения 1:

$$f(\tilde{x}_1) = 0.109;$$
 $f(\tilde{x}_2) = 0.252;$ $f(\tilde{x}_3) = 0.360;$ $f(\tilde{x}_4) = 0.317;$ $f(\tilde{x}_5) = 0.173;$ $f(\tilde{x}_6) = 0.058.$

$$f(x_4) = 0.517, \quad f(x_5) = 0.175, \quad f(x_6) = 0.05$$

Теоретическая кривая f(x) показана на рис. 15.

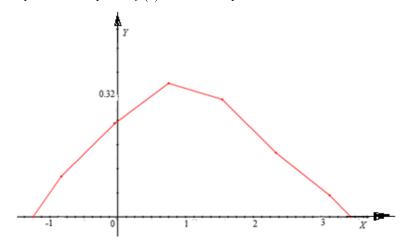


Рис. 16 Теоретическая кривая распределения

Вид кривой (рис. 16) и гистограмма (рис. 14) подтверждают возможность предположить, что распределение является нормальным. Это подтверждается и тем, что вычисленные допустимые для выборочных асимметрий и эксцесса $A^* = 0.31$ и $E^* = -0.23$ интервалы имеют вид: $(-\delta_a; \delta_a) = (-0.33; 0.33)$ и $(-\delta_a; \delta_b) = (-0.62; 0.62)$.

6. Докажем приятую гипотезу.

Рассмотрим гипотезу H_0 : генеральная совокупность \overline{X} распределена по нормальному закону. Введем альтернативную гипотезу H_1 : гипотеза H_0 не выполнена. Докажем высказанную гипотезу, используя критерий Пирсона.

Во всех интервалах статистического ряда абсолютные частоты $n_i \ge 5$. Поэтому объединение интервалов проводить не нужно.

1) Вычислим теоретические вероятности p_i , используя значения функции Лапласа, определяемые из табл. (Приложение 2).

$$p_{i} = p \left\{ a_{0} \leq \overline{X} \leq a_{1} \right\} = \Phi \left(\frac{a_{1} - \overline{x}}{\overline{s}} \right) - \Phi \left(\frac{a_{0} - \overline{x}}{\overline{s}} \right)$$

$$p_{1} = \Phi \left(\frac{-0.42 - 0.92}{1.07} \right) - \Phi \left(\frac{-1.18 - 0.92}{1.07} \right) = -\Phi (1.25) - \Phi (1.96) = -0.39 + 0.47 = 0.08;$$

$$p_{2} = \Phi \left(\frac{0.34 - 0.92}{1.07} \right) - \Phi \left(\frac{-0.42 - 0.92}{1.07} \right) = -\Phi (0.54) + \Phi (1.25) = -0.21 + 0.39 = 0.18;$$

$$p_{3} = \Phi \left(\frac{1.1 - 0.92}{1.07} \right) - \Phi \left(\frac{0.34 - 0.92}{1.07} \right) = \Phi (0.17) - \Phi (0.54) = 0.07 + 0.21 = 0.28;$$

$$p_{4} = \Phi \left(\frac{1.86 - 0.92}{1.07} \right) - \Phi \left(\frac{1.1 - 0.92}{1.07} \right) = \Phi (0.88) - \Phi (0.17) = 0.31 - 0.07 = 0.24;$$

$$p_{5} = \Phi \left(\frac{2.62 - 0.92}{1.07} \right) - \Phi \left(\frac{1.86 - 0.92}{1.07} \right) = \Phi (1.59) - \Phi (0.88) = 0.44 - 0.31 = 0.13;$$

$$p_{6} = \Phi \left(\frac{3.38 - 0.92}{1.07} \right) - \Phi \left(\frac{2.62 - 0.92}{1.07} \right) = \Phi (2.29) - \Phi (1.59) = 0.49 - 0.44 = 0.05.$$
2) Ctathecthery $\chi^{2}_{\text{Hado}i}$ behave then the dormwise $\chi^{2}_{\text{Hado}i} = \sum \frac{(m_{i} - n_{i})^{2}}{m_{i}}$ is

2) Статистику $\chi^2_{\text{набл}}$ вычислим по формуле $\chi^2_{\text{набл}} = \sum_i \frac{(m_i - n_i)^2}{m_i}$ заполним табл. 16.

Таблица 16

No	$\left[a_{i-1};a_{i}\right)$	n_i	p_i	$m_i = np_i$	$(m_i - n_i)^2$
					m_i
1	[-1,18; -0,42)	6	0,08	4	1,00
2	[-0,42; 0,34)	7	0,18	9	0,44
3	[0,34; 1,1)	20	0,28	14	2,57
4	[1,1; 1,86)	7	0,24	12	2,08
5	[1,86; 2,62)	5	0,13	6,5	0,346
6	[2,62; 3,38)	5	0,05	2,5	2,5
Σ	-	50	-	-	8,936

Следовательно, $\chi^2_{\text{набл}} = 8,94$.

Поскольку интервалов шесть, а оцениваемых параметров два (a и δ), то число степеней свободы k: k=6-2-1=3.

По заданному уровня значимости $\alpha = 0.01$ и по вычисленному числу степеней свободы k=3 по табл. распределения Пирсона (Приложение 5) определим границу критической области, которую выберем односторонней $\chi^2_{\rm kpl.} = 11,34$.

Гипотеза о нормальном законе распределения генеральной совокупности принимается, так как $\chi^2_{_{\rm HaGD,}}=8{,}94\leq\chi^2_{_{\rm KD,}}$

Поскольку принята гипотеза о нормальном законе генеральной совокупности, то следует найти доверительные интервалы для параметров распределения (a и δ).

3) Найдем доверительные интервалы для параметров распределения.

Доверительный интервал для параметра а:

- 1. Пусть доверительная вероятность (надежность) $\beta = 0.98$.
- 2. По табл. распределения Стьюдента (Приложение 3) определим $t_{\beta}=2,405$ для $\beta=0,98$ и числа степеней свободы k=n-1=50-1=49.
 - 3. Вычислим точность

$$\varepsilon = t_{\text{B}} \frac{s}{\sqrt{k}} = 2,405 \frac{1,06}{\sqrt{49}} = 0,364 \quad \varepsilon = 0,364.$$

4. Доверительный интервал для математического ожидания a нормального распределения имеет вид:

$$(\bar{x} - \varepsilon; \bar{x} + \varepsilon) = (0.92 - 0.364; 0.92 + 0.364) = (0.556; 1.284)$$

Доверительный интервал для δ :

1. По таблице Приложения 5, находим значения χ_n^2 для числа степеней свободы k=n-1=49 и для

$$\alpha_1 = \frac{1+\beta}{2} = \frac{1+0.98}{2} = 0.99; \quad \alpha_2 = \frac{1-\beta}{2} = \frac{1-0.98}{2} = 0.01$$

вычисляются $\gamma_1 = \chi^2_{\alpha_1 : m} = 28,2; \quad \gamma_2 = \chi^2_{\alpha_2 : m} = 73,7.$

2. Оценим доверительный интервал:

$$\left(s\sqrt{\frac{m}{\gamma_{2}}}; s\sqrt{\frac{m}{\gamma_{1}}}\right) = \left(1,07\sqrt{\frac{49}{73,7}}; 1,07\sqrt{\frac{49}{28,2}}\right) = (0,87; 1,41).$$

$$\delta \in (0,87; 1,41).$$

Ответ:

- 1) данное распределение подчиняется нормальному распределению с параметрами a=0.92 и $\sigma=1.07$,
 - 2) доверительный интервал для $a \in (0,556; 1,284)$,
 - 3) доверительный интервал для $\delta \in (0.87; 1.41)$.

приложения

Приложение 1

Значения функции
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

х	0	1	2	3	4	5	6	7	8	9
0,0	0,3989	3989	3989	3988	3986	3984	3982	3980	3977	3973
0,1	3970	3965	3961	3956	3951	3945	3939	3932	3925	3918
0,2	3910	3902	3894	3885	3876	3867	3857	3847	3836	3825
0,3	3814	3802	3790	3778	3765	3752	3739	3726	3712	3697
0,4	3683	3668	3652	3637	3621	3605	3589	3572	3555	3538
0,5	3521	3503	3485	3467	3448	3429	3410	3391	3372	3352
0,6	3332	3312	3292	3271	3251	3230	3209	3187	3166	3144
0,7	3123	3101	3079	3056	3034	3011	2989	2966	2943	2920
0,8	2897	2874	2850	2827	2803	2780	2756	2732	2709	2685
0,9	2661	2637	2613	2589	2565	2541	2516	2492	2468	2444
1,0	0,2420	2396	2371	2347	2323	2299	2275	2251	2227	2203
1,1	2179	2155	2131	2107	2083	2059	2036	2012	1989	1965
1,2	1942	1919	1895	1872	1849	1826	1804	1781	1758	1736
1,3	1714	1691	1669	1647	1626	1604	1582	1561	1539	1518
1,4	1497	1476	1456	1435	1415	1394	1374	1354	1334	1315
1,5	1295	1276	1257	1238	1219	1200	1182	1163	1145	1127
1,6	1109	1092	1074	1057	1040	1023	1006	0989	0973	0957
1,7	0940	0925	0909	0893	0878	0863	0848	0833	0818	0804
1,8	0790	0775	0761	0748	0734	0721	0707	0694	0681	0669
1,9	0656	0644	0632	0620	0608	0596	0584	0573	0562	0551
2,0	0,0540	0529	0519	0508	0498	0488	0478	0468	0459	0449
2,1	0440	0431	0422	0413	0404	0396	0387	0379	0371	0363
2,2	0355	0347	0339	0332	0325	0317	0310	0303	0297	0290
2,3	0283	0277	0270	0264	0258	0252	0246	0241	0235	0229
2,4	0224	0219	0213	0208	0203	0198	0194	0189	0184	0180

х	0	1	2	3	4	5	6	7	8	9
2,5	0175	0171	0167	0163	0158	0154	0151	0147	0143	0138
2,6	0136	0132	0129	0126	0122	0119	0116	0113	0110	0107
2,7	0104	0101	0099	0096	0093	0091	0088	0086	0084	0081
2,8	0079	0077	0075	0073	0071	0069	0067	0065	063	0061
2,9	0060	0058	0056	0055	0053	0051	0050	0048	0047	0046
3,0	0,004	0043	0042	0040	0039	0038	0037	0036	0035	0034
3,1	0033	0032	0031	0030	0029	0028	0027	0026	0025	0025
3,2	0024	0023	0022	0022	0021	0020	0020	0019	0018	0018
3,3	0017	0017	0016	0016	0015	0015	0014	0014	0013	0013
3,4	0012	0012	0012	0011	0011	0010	0010	0010	0009	0009
3,5	0009	0008	0008	0008	0008	0007	0007	0007	0007	0006
3,6	0006	0006	0006	0005	0005	0005	0005	0005	0005	0004
3,7	0004	0004	0004	0004	0004	0004	0003	0003	0003	0003
3,8	0003	0003	0003	0003	0003	0002	0002	0002	0002	0002
3,9	0002	0002	0002	0002	0002	0002	0002	0002	0001	0001

Приложение 2

Значения функции
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{z^{2}}{2}} dz$$

х	$\Phi(x)$	х	$\Phi(x)$	х	$\Phi(x)$	x	$\Phi(x)$
0,00	0,0000	0,37	0,1443	0,74	0,2703	1,11	0,3665
0,01	0,0040	0,38	0,1480	0,75	0,2734	1,12	0,3686
0,02	0,0080	0,39	0,1517	0,76	0,2764	1,13	0,3708
0,03	0,0120	0,40	0,1554	0,77	0,2794	1,14	0,3729
0,04	0,0160	0,41	0,1591	0,78	0,2823	1,15	0,3749
0,05	0,0199	0,42	0,1628	0,79	0,2852	1,16	0,3770
0,06	0,0239	0,43	0,1664	0,80	0,2881	1,17	0,3790
0,07	0,0279	0,44	0,1700	0,81	0,2910	1,18	0,3810
0,08	0,0319	0,45	0,1736	0,82	0,2939	1,19	0,3830
0,09	0,0359	0,46	0,1772	0,83	0,2967	1,20	0,3849
0,10	0,0398	0,47	0,1808	0,84	0,2995	1,21	0,3869
0,11	0,0438	0,48	0,1844	0,85	0,3023	1,22	0,3883
0,12	0,0478	0,49	0,1879	0,86	0,3051	1,23	0,3907
0,13	0,0517	0,50	0,1915	0,87	0,3078	1,24	0,3925
0,14	0,0557	0,51	0,1950	0,88	0,3106	1,25	0,3944
0,15	0,0596 1	0,52	0,1985	0,89	0,3133	1,26	0,3962
0,16	0,0636	0,53	0,2019	0,90	0,3159	1,27	0,3980
0,17	0,0675	0,54	0,2054	0,91	0,3186	1,28	0,3997
0,18	0,0714	0,55	0,2088	0,92	0,3212	1,29	0,4015
0,19	0,0753	0,56	0,2123	0,93	0,3238	1,30	0,4032
0,20	0,0793	0,57	0,2157	0,94	0,3264	1,31	0,4049
0,21	0,0832	0,58	0,2190	0,95	0,3289	1,32	0,4066
0,22	0,0871	0,59	0,2224	0,96	0,3315	1,33	0,4088
0,23	0,0910	0,60	0,2257	0,97	0,3340	1,34	0,4099
0,24	0,0948	0,61	0,2291	0,98	0,3365	1,35	0,4115
0,25	0,0987	0,62	0,2324	0,99	0,3389	1,36	0,4131

х	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$
0,26	0,1026	0,63	0,2357	1,00	0,3413	1,37	0,4147
0,27	0,1064	0,64	0,2389	1,01	0,3438	1,38	0,4162
0,28	0,1103	0,65	0,2422	1,02	0,3461	1,39	0,4177
0,29	0,1141	0,66	0,2454	1,03	0,3485	1,40	0,4192
0,30	0,1179	0,67	0,2486	1,04	0,3508	1,41	0,4207
0,31	0,1217	0,68	0,2517	1,05	0,3531	1,42	0,4222
0,32	0,1255	0,69	0,2549	1,06	0,3554	1,43	0,4236
0,33	0,1293	0,70	0,2580	1,07	0,3577	1,44	0,4251
0,34	0,1331	0,71	0,2611	1,08	0,3599	1,45	0,4265
0,35	0,1368	0,72	0,2642	1,09	0,3621	1,46	0,4279
0,36	0,1406	0,73	0,2673	1,10	0,3643	1,47	0,4292
1,50	0,4332	1,90	0,4713	2,36	0,4909	2,84	0,4977
1,55	0,4394	1,95	0,4744	2,42	0,4922	2,90	0,4981
1,60	0,4452	2,00	0,4772	2,48	0,4934	3,00	0,4987
1,65	0,4505	2,06	0,4803	2,54	0,4945	3,20	0,4993
1,70	0,4554	2,12	0,4830	2,60	0,4953	3,40	0,4997
1,75	0,4593	2,18	0,4854	2,66	0,4961	3,60	0,4998
1,80	0,4641	2,24	0,4875	2,72	0,4967	3,80	0,499928
1,85	0,4678	2,30	0,4893	2,78	0,4973	4,00	0,499968

Приложение 3

Распределение Стъюдента (к – число степеней свободы)

		Уро	вень знач	имости α	(двусторо	нняя крит	ическая об	бласть)	
k	0,25	0,2	0,1	0,05	0,02	0,01	0,005	0,002	0,001
1	2,414	3,078	6,314	12,706	31,821	63,656	127,32	318,29	636,58
2	1,604	1,886	2,920	4,303	6,965	9,925	14,089	22,328	31,600
3	1,423	1,638	2,353	3,182	4,541	5,841	7,453	10,214	12,924
4	1,344	1,533	2,132	2,776	3,747	4,604	5,598	7,173	8,610
5	1,301	1,476	2,015	2,571	3,365	4,032	4,773	5,894	6,869
6	1,273	1,440	1,843	2,447	3,143	3,707	4,317	5,208	5,959
7	1,254	1,415	1,895	2,365	2,998	3,499	4,029	4,785	5,408
8	1,240	1,397	1,860	2,306	2,896	3,355	3,833	4,501	5,041
9	1,230	1,383	1,833	2,262	2,821	3,250	3,690	4,297	4,781
10	1,221	1,372	1,812	2,228	2,864	3,169	3,581	4,144	4,587
11	1,214	1,363	1,796	2,201	2,718	3,106	3,497	4,025	4,437
12	1,209	1,356	1,782	2,179	2,681	3,055	3,428	3,930	4,318
13	1,204	1,350	1,771	2,160	2,650	3,012	3,372	3,852	4,221
14	1,200	1,345	1,761	2,145	2,624	2,977	3,326	3,787	4,140
15	1,197	1,341	1,753	2,131	2,602	2,947	3,286	3,733	4,073
16	1,194	1,337	1,746	2,120	2,583	2,921	3,252	3,686	4,015
17	1,191	1,333	1,740	2,110	2,567	2,898	3,222	3,646	3,965
18	1,189	1,330	1,731	2,101	2,552	2,878	3,197	3,610	3,922
19	1,187	1,328	1,729	2,093	2,539	2,861	3,174	3,579	3,883
20	1,185	1,325	1,725	2,086	2,528	2,845	3,153	3,552	3,850
21	1,183	1,323	1,721	2,080	2,518	2,831	3,135	3,527	3,819
22	1,182	1,321	1,717	2,074	2,508	2,819	3,119	3,505	3,792
23	1,180	1,319	1,714	2,069	2,500	2,807	3,104	3,485	3,768
24	1,179	1,318	1,711	2,064	2,492	2,797	3,091	3,467	3,745
25	1,178	1,316	1,708	2,060	2,485	2,787	3,078	3,45	3,725
26	1,177	1,315	1,706	2,056	2,479	2,779	3,067	3,435	3,707
27	1,176	1,314	1,703	2,052	2,173	2,771	3,057	3,421	3,689
28	1,175	1,313	1,701	2,048	2,467	2,763	3,047	3,408	3,674
29	1,174	1,311	1,699	2,045	2,462	2,756	3,038	3,396	3,660
30	1,173	1,310	1,697	2,042	2,457	2,750	3,030	3,385	3,646
40	1,167	1,303	1,684	2,021	2,423	2,704	2,971	3,307	3,551
50	1,164	1,299	1,676	2,009	2,403	2,678	2,937	3,261	3,496

k	Уровень значимости α (двусторонняя критическая область)										
	0,25	0,2	0,1	0,05	0,02	0,01	0,005	0,002	0,001		
60	1,162	1,296	1,671	2,000	2,390	2,660	2,915	3,232	3,460		
70	1,160	1,294	1,667	1,994	2,381	2,648	2,899	3,211	3,435		
80	1,159	1,292	1,664	1,990	2,374	2,639	2,887	3,195	3,416		
90	1,158	1,291	1,662	1,987	2,368	2,632	2,878	3,183	3,402		
100	1,157	1,290	1,660	1,984	2,364	2,626	2,871	3,174	3,390		
200	1,154	1,286	1,653	1,972	2,345	2,601	2,838	3,131	3,340		

Приложение 4

Таблица значений $q=qig(\gamma,nig)$

nγ	0,95	0,99	0,999	n γ	0,95	0,99	0,999
5	1,37	2,67	5,64	20	0,37	0,58	0,88
6	1,09	2,01	3,88	25	0,32	0,49	0,73
7	0,92	1,62	2,98	30	0,28	0,43	0,63
8	0,80	1,38	2,42	35	0,26	0,38	0,56
9	0,71	1,20	2,06	40	0,24	0,35	0,50
10	0,65	1,08	1,80	45	0,22	0,32	0,46
11	0,59	0,98	1,60	50	0,21	0,30	0,43
12	0,55	0,90	1,45	60	0,188	0,269	0,38
13	0,52	0,83	1,33	70	0,174	0,245	0,34
14	0,48	0,78	1,23	80	0,161	0,226	0,31
15	0,46	0,73	1,15	90	0,151	0,211	0,29
16	0,44	0,70	1,07	100	0,143	0,198	0,27
17	0,42	0,66	1,01	150	0,115	0,160	0,211
18	0,40	0,63	0,96	200	0,099	0,136	0,185
19	0,39	0,60	0,92	250	0,089	0,120	0,162

Распределение Пирсона (уровень значимости $\gamma \in [0,001-0,7]$)

n^{α}	0,001	0,005	0,01	0,025	0,05	0,1	0,2	0,3	0,7
1	10,83	7,879	6,635	5,024	3,841	2,706	1,642	1,074	0,148
2	13,82	10,60	9,210	7,378	5,991	4,605	3,219	2,408	0,713
3	16,27	12,84	11,34	9,348	7,815	6,251	4,642	3,665	1,424
4	18,47	14,86	13,28	11,14	9,488	7,779	5,989	4,878	2,195
5	20,51	16,75	15,09	12,83	11,07	9,24	7,29	6,06	3,000
6	22,46	18,55	16,81	14,45	12,59	10,64	8,56	7,23	3,828
7	24,32	20,28	18,48	16,01	14,07	12,02	9,80	8,38	4,671
8	26,12	21,95	20,09	17,53	15,51	13,36	11,03	9,52	5,527
9	27,88	23,59	21,67	19,02	16,92	14,68	12,24	10,66	6,393
10	29,59	25,19	23,21	20,48	18,31	15,99	13,44	11,78	7,267
11	31,26	26,76	24,73	21,92	19,68	17,28	14,63	12,90	8,148
12	32,91	28,30	26,22	23,34	21,03	18,55	15,81	14,01	9,034
13	34,53	29,82	27,69	24,74	22,36	19,81	16,98	15,12	9,926
14	36,12	31,32	29,14	26,12	23,68	21,06	18,15	16,22	10,82
15	37,70	32,80	30,58	27,49	25,00	22,31	19,31	17,32	11,72
16	39,25	34,27	32,00	28,85	26,30	23,54	20,47	18,42	12,62
17	40,79	35,72	33,41	30,19	27,59	24,77	21,61	19,51	13,53
18	42,31	37,16	34,81	31,53	28,87	25,99	22,76	20,60	14,44
19	43,82	38,58	36,19	32,85	30,14	27,20	23,90	21,69	15,35
20	45,31	40,00	37,57	34,17	31,41	28,41	25,04	22,77	16,27
21	46,80	41,40	38,93	35,93	32,67	29,62	26,17	23,86	17,18
22	48,27	42,80	40,29	36,78	33,93	30,81	27,30	24,94	18,10
23	49,73	44,18	41,64	38,08	35,17	32,01	28,43	26,02	19,02
24	51,18	45,56	42,98	39,36	36,42	33,20	29,55	27,10	19,94
25	52,62	46,93	44,31	40,65	37,65	34,38	30,68	28,17	20,87
26	54,05	48,29	45,64	41,92	38,89	35,56	31,79	29,25	21,79
27	55,48	49,65	46,96	43,19	40,11	36,74	32,91	30,32	22,72
28	56,89	50,99	48,28	44,46	41,34	37,92	34,03	31,39	23,65
29	58,30	52,34	49,59	45,72	42,56	39,09	35,14	32,46	24,58
30	59,70	53,67	50,89	46,98	43,77	40,26	36,25	33,53	25,51
35	66,62	60,27	57,34	53,20	49,80	46,06	41,78	38,86	30,18
40	73,40	66,77	63,69	59,34	55,76	51,81	47,27	44,16	34,87

Продолжение прил. 5

n^{α}	0,001	0,005	0,01	0,025	0,05	0,1	0,2	0,3	0,7
45	80,08	73,17	69,96	65,41	61,66	57,51	52,73	49,45	39,58
50	86,66	79,49	76,15	71,42	67,50	63,17	58,16	54,72	44,31
55	93,17	85,75	82,29	77,38	73,31	68,80	63,58	59,98	49,06
60	99,61	91,95	88,38	83,30	79,08	74,40	68,97	65,23	53,81
65	105,99	98,10	94,42	89,18	84,82	79,97	74,35	70,46	58,57
70	112,32	104,21	100,43	95,02	90,53	58,53	79,71	75,69	63,35
75	118,60	110,29	106,39	100,84	96,22	91,06	85,07	80,91	68,13
80	124,84	116,32	112,33	106,63	101,88	96,58	90,41	86,12	72,92
85	131,04	122,32	118,24	112,39	107,52	102,08	95,73	91,32	77,71
90	137,21	128,30	124,12	118,14	113,15	107,57	101,05	96,52	82,51
95	143,34	134,25	129,97	123,86	118,75	113,04	106,36	101,72	87,32
100	149,45	140,17	135,81	129,56	124,34	118,50	111,67	106,91	92,13

Распределение Пирсона (уровень значимости $\gamma \in [0, 8-0, 999]$)

n^{α}	0,8	0,9	0,95	0,975	0,99	0,995	0,999
1	0,064	0,016	0,004	0,001	1,571 · 10-4	3,927 · 10 ⁻⁵	1,57·10 ⁻⁶
2	0,446	0,211	0,103	0,051	0,020	0,010	0,002
3	1,005	0,584	0,352	0,216	0,115	0,072	0,024
4	1,649	1,064	0,711	1,484	0,297	0,207	0,091
5	2,343	1,610	1,145	0,831	0,554	0,412	0,210
6	3,070	2,204	1,635	1,237	0,872	0,676	0,381
7	3,822	2,833	2,167	1,69	1,239	0,989	0,599
8	4,594	3,490	2,733	2,180	1,647	1,344	0,857
9	5,380	4,168	3,325	2,700	2,088	1,735	1,152
10	6,179	4,865	3,940	3,247	2,558	2,156	1,479
11	6,989	5,578	4,575	3,816	3,053	2,603	1,834
12	7,807	6,304	5,226	4,404	3,517	3,074	2,214
13	8,634	7,041	5,892	5,009	4,107	3,565	2,617
14	9,467	7,790	6,571	5,629	4,660	4,075	3,041
15	10,31	8,547	7,261	6,262	5,229	4,601	3,483
16	11,15	9,312	7,962	6,908	5,812	5,142	3,942
17	12,00	10,09	8,672	7,564	6,408	5,697	4,416

n	0,8	0,9	0,95	0,975	0,99	0,995	0,999
18	12,86	10,86	9,390	8,231	7,015	6,265	4,905
19	13,72	11,65	10,12	8,907	7,633	6,844	5,407
20	14,58	12,44	10,85	9,591	8,260	7,434	5,921
21	15,44	13,24	11,59	10,28	8,897	8,034	6,447
22	16,31	14,04	12,34	10,98	9,542	8,643	6,983
23	17,19	14,85	13,09	11,69	10,20	9,260	7,529
24	18,06	15,66	13,85	12,40	10,86	9,886	8,085
25	18,94	16,47	14,61	13,12	11,52	10,52	8,649
26	19,82	17,29	15,38	13,84	12,20	11,16	9,222
27	20,70	18,111	16,15	14,57	12,88	11,81	9,803
28	21,59	18,94	16,93	15,31	13,56	12,46	10,39
29	22,48	19,77	17,71	16,05	14,26	13,12	10,99
30	23,36	20,60	18,49	16,79	14,95	13,79	11,59
35	27,84	24,80	22,47	20,57	18,51	17,19	14,69
40	32,34	29,05	26,51	24,43	22,16	20,71	17,92
45	36,88	33,35	30,61	28,37	25,90	24,31	21,25
50	41,45	37,69	34,76	32,36	29,71	27,99	24,67
55	46,04	42,06	38,96	36,40	33,57	31,73	28,17
60	50,64	46,46	43,19	40,48	37,48	35,53	31,74
65	55,26	50,88	47,45	44,60	41,44	39,38	35,36
70	59,90	55,33	51,74	48,76	45,44	43,28	39,40
75	64,55	59,79	56,05	52,94	49,48	47,21	42,76
80	69,21	64,28	60,39	57,15	53,54	51,17	46,52
85	73,88	68,78	64,75	61,39	57,63	55,17	5,32
90	78,56	73,29	69,13	65,65	61,75	59,20	54,16
95	83,25	77,82	73,52	69,92	65,90	63,25	58,02
100	87,95	82,36	77,93	74,22	70,06	67,33	61,92

Список литературы

- 1. *Атурин*, *В. В.* Высшая математика. Задачи с решениями для студентов экономических специальностей: учеб. пособие для студ. учреждений высш. проф. образования / В. В. Атурин, В. В. Годин. М.: Издательский центр «Академия», 2010. 304 с.
- 2. *Гмурман*, *В. Е.* Руководство к решению задач по теории вероятностей и математической статистике. М.: Высш. школа, 2004. 400 с.
- 3. *Горелова*, Γ . B. Теория вероятностей и математическая статистика в примерах и задачах с применением Excel / Учебное пособие для вузов; 2-е изд., испр. и доп. // Γ . В. Горелова, И. А. Кацко. Ростов на Π : Феникс, 2002. 400 с.
- 4. *Красс*, *М. С.* Основы математики и ее приложения в экономическом образовании: Учебник.- 3-е изд., испр. / М. С. Красс, Б. П. Чупрынов. М: Дело, 2002. 688с.
- 5. *Кремер*, *Н. Ш.* Теория вероятностей и математическая статистика: Учебник для вузов. М.: ЮНИТИ ДАНА, 2004. 543с.
- 6. Общий курс высшей математики для экономистов: Учебник / под ред. В. И. Ермакова. М.: ИНФРА М, 2008. 656 с. (Серия «Высшее образование»).

Содержание

Введение	3
Основные теоретические положения	3
Задание 1	14
Задание 2	16
Решение примерных заданий контрольной работы	19
Приложения	39
Приложение 1	39
Приложение 2	41
Приложение 3	43
Приложение 4	44
Приложение 5	45
Список литературы	48

Учебное издание

Методические указания к выполнению контрольной работы «Элементы статистики» для студентов II курса экономических направлений бакалавриата

Составители: Окунева Галина Леонидовна Польшина Лидия Борисовна Селиванова Елена Вячеславовна

Подписано в печать 25.03.20. Формат 60x84/16. Усл. печ. л. 2,9. Уч.-изд. л. 3. Тираж 60 экз. Заказ № Цена Отпечатано в Белгородском государственном технологическом университете им. В. Г. Шухова 308012, г. Белгород, ул. Костюкова, 46